A Comprehensive Review on Phytoremediation Potentials of Hibiscus cannabinus Linn. (Kenaf): Mechanisms, Benefits and Prospects

Authors

  • Y. Mukhtar Bayero University, Kano PMB 3011, Kano, Nigeria
  • A.M. Galalain Bayero University, Kano PMB 3011, Kano, Nigeria
  • K. Abdu
  • S. Tukur
  • R. A Bashir
  • A.I Abdulkadir
  • A.A Habib

DOI:

https://doi.org/10.47672/ajns.441

Keywords:

Phytoremediation, Hibiscus cannabinus (Kenaf), contaminants, mechanisms, prospects

Abstract

Contaminated soils and their associated problems have increasingly become a matter of concern. The most common contaminants generated by industrial urban emissions and agricultural practices are trace metals. Remediation of trace metals is mostly conducted using physico-chemical processes and this causes soils to become polluted. Nevertheless, these techniques damage the soil's biological activity and require highly sophisticated expensive equipment. Phytoremediation is a relatively low-cost technology based on the use of selected plants to remove, degrades or contains soil pollutants. The potential of Kenaf for phytoremediation on soils contaminated with heavy metals and other contaminants have been investigated and of course reported in several literatures to be very effective. In view of that, this paper would therefore underscore the phytoremediation potentials of Hibiscus cannabinus (Kenaf), the possible utilization of the contaminated biomass and its prospects in the field of bioremediation.

Downloads

Download data is not yet available.

Author Biographies

Y. Mukhtar, Bayero University, Kano PMB 3011, Kano, Nigeria

Department of Plant Biology, Faculty of Life Sciences, Bayero University, Kano PMB 3011, Kano, Nigeria

A.M. Galalain, Bayero University, Kano PMB 3011, Kano, Nigeria

Department of Plant Biology, Faculty of Life Sciences, Bayero University, Kano PMB 3011, Kano, Nigeria

References

Abioye P, Abdul Aziz A, Agamuthu P. (2010) Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water Air Soil Pollut 209(1):173-179. doi:10.1007/s11270- 009-0189-3

Abou-Shanab R., Ghanem N., Ghanem K. and Al-Kolaibe A. (2007). Phytoremediation Potential of Crop and Wild Plants for Multi-metal Contaminated Soils. Research Journal of Agriculture and Biological Sciences, 3(5): 370-376.

Adriano D. C., (1986): Trace elements in the terrestrial environment. - Springer- Verlag, New York;. pp, 533.

Agboun T. D. T., Apugo-Nwosu T. U., Mohammed J. A., Ameh A. O., Abubakar G., Mustapha M. and Okoro P. (2016). Potentials of Using Moringa oleifera Seeds in the Bioremediation of Soil Contaminated by Crude Oil. British Journal of Applied Science & Technology 15(1): 1-8.

Alkorta, and C. Garbisu, (2001). Phytoremediation of organic contaminants in soils, Bioresource, 79, 273 - 276.

Alloway, B. J. (1990): - In Heavy Metals in Soils (ed Alloway B. J.), Blackie, Glasgow.

Ansari Z. A. and Sharma P. (2017). A Review On Phytoremediation By Alternanthera Philoxeroides. International Conference on Innovative Research In Science, Technology and Management. Modi Institute of Management and Technology, Dabari, Khota, Rajasthan. 978-983-86171-20-7.

Bada, B S; Fagbola, A (2014). Effects of Arbuscular Mycorrhiza and Composted Market Waste on the Performance of Tiannug 1 Variety of Kenaf (Hibiscus cannabinus Linn.). Int J Biol Chem Sci 8(3): 1151 - 1164.

Bada, B S; Umunnakwe, C F (2011). Phytoremediation potential of Kenaf (Hibiscus cannabinus Linn.) under different soil pH and copper concentrations. J Sci Res 10(2): 160 - 166.

Baker A. J. M., Reeves R. D. and McGrath S. P. In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants"”a feasibility study, 600 - 605, In: Hinchee, R. E., Olfenbuttel, R. F., editors. In-situ bioreclamation, Boston: Butterworth- Heinemann, 1991.

Baker J. M., McGrath S.P., Sidoli C.M.D. and Reeves R. D. (1994) The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal accumulating plants, Resources Conservation Recycling,11, 41 - 49.

Baker, A.J.M. (1981). Accumulators and excluders strategies in the response of plants to heavy metals. J. Plant Nutri. 3: 643-654

Baker, A.J.M. (1987). Metal tolerance. New Phyt. 106: 93-111

Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D. and Reeves, R.D. (1994): The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. - Resour. Conserv. Recycl. 11; 41-49.

Baker, A.J.M., P.L. Walker, (1990). Ecophysiology of metal uptake by tolerant plants, CRC Press, Boca Raton, pp: 155-178.

Baker, A.J.M., S.P. McGrath, C.M.D. Sidoli, R.D. Reeves, (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour., Conserv. Recyc. 11: 41- 49.

Bañuelos G.S. (2000): Phytoextraction of selenium from soils irrigated with selenium-laden effluent. - Plant and Soil. 224(2); 251-258

Banuelos GS, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P, Akohoue S, Zambrzuski S. (1993). Boron and selenium removal in boron laden soils by four sprinkler irrigated plant species. Journal of Environmental Quality. 22, 786-92.

Barceló, J, Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Contributions to Science 2(3):333 - 344.

Berti, W.R. and Cunningham, S.D., (2000): In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. (ed. Raskin, I.) - Wiley-Interscience, John Wiley and Sons, Inc. New York, NY.; pp 71- 88.

Best E.P.H., Zappi M.E., Fredrickson H.L., Sprecher S.L, Larson S. L. and Ochman M. (1997). Screening of aquatic and wetland plant species for phytoremediation of explosives contaminated ground water for the Iowa army ammunition Plant, Ann. New York Acad. Sci., 829,179 - 194.

Bridgwater, A.V., Meier, D., Radlein, D., (1999): An overview of fast pyrolysis of biomass. - Org. Geochem. 30; 1479-1493.

Brooks R.R. (1994) In Plants and Chemical Elements: Biochemistry, Uptake, Tolerance and Toxicity. (ed. Gargo M E). - VCH Verlagsgesellsschaft, Weinheim, Germany; pp 88- 105.

Brooks, R.R., Chambers, M.F., Nicks, L.J., and Robinson, B.H. (1998): - Phytomining. Trends in Plant and Science. 1: 359-362.

Chaney, R L, Malik, M, Li, Y M, Brown, S L, Brewer, G P; Baker, A J M (1997).

Chaney, R.L., (1983). Plant uptake of inorganic waste constitutes. In: Parr et al (Eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park ridge, N.J. pp: 50-76.

Chaudhry, T.M., Hayes, W.J., Khan, A.G. and Khoo, C.S. (1998): Phytoremediation - focusing on accumulator plants that remediate metalcontaminated soils. - Austraaslian Journal of Ecotoxicology. 4; 37-51.

Cheng, S. ( 2003). Heavy metal pollution in China: origin, Pattern and control. Environ. Sci. Pollu. Res., 10, 192-198.

Cluis C., and Junk-greedy Greens, (2004): Phytoremediation as a new option for soil decontamination. Biotech, 2, 61-67.

Cunningham, S.D., and Ow, D.W. (1996): Promises and prospects of phytoremediation. - Plant Physiol. 110; 715-719.

Cunningham, SD, Ow, DW. (1996) Promises and prospects of phytoremediation, Plant Physiol 110:715 - 719.

De Vos, C.H.R., Schat, H., De Waal, M.A.M., Voojs, R., Ernst, W.H.O., (1991). Increased resistance to copper-induced damage of root cell plasmalemma in copper tolerant Silene cucubalus, Phys. Plant. 82, 523-528.

Diels, L., Van der Lelie, N., Bastiaens, L. (2002). New development in treatment of heavy metal contaminated soils. Rev. Environ. Sci. Biotech. 1, 75-82.

Dietz A.C. and J.L. Schnoor, (2000). Advances in phytoremediation. Environ. Health Perspect. 109, 2001, 163-168.

Duggal K. N. (2008). Elements of environmental engineering, New Delhi: S. Chand Publications.

Dushenkov V., P. Kumar, H. Motto andI.Raskin, (1995) Rhizofiltration - the use of plants to remove heavy - metals from aqueous streams, Eviron Sci. Technol., 29, 1239 - 1245.

EPA (2000). A Citizen's Guide to Phytoremediation. EPA 542-F-98-011. United States EnvironmentalProtection Agency, p. 6. Available at: http//www.bugsatwork.com/XYCLONYX/EPA_GUIDES /PHYTO.PDF

Etim E.E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3): 120-136.

Garbisu, C, Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technol 77: 229 - 236. 2001.

Ghosh M. and Singh S.P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology And Environmental Research 3(1): 1-18.

Ground-Water Remediation Technologies Analysis Center, GWRTAC:Remediation of Metals- Contaminated Soils and Groundwater, Technology Evaluation Report, TE-97-01, GWRTAC-E Series, Pittsburgh, PA 15238. http://www.gwrtac.org. 1997.

Helmisaari, H-S, Salemaa, M, Derome, J, Kiikkila, O, Uhlig, C, Nieminen, TM. (2007) Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants. J. Environ. Qual 36:1145 - 1153.

Hetland, MD, Gallegher, JR, Daly, DJ, Hassett, DJ, Heebink, LV. (2001): Processing of plants used to phytoremediate lead-contaminated sites. Phytoremediation, Wetlands and Sediments, The 6th International In situ and On site Bioremediation Symposium, San Diego, California, 4 - 7th June, Battelle Press, columbus, Richland, pp. 129 - 136.

Ho, W. M., Ang, L. H., & Lee, D. K. (2008). Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. Journal of Environmental Sciences, 20(11), 1341-1347.

Iyer, PVR, Rao, TR, Grover, PD. (2002) Biomass Thermochemical Characterization (3rd Edition), Indian Institute of Technology, Delhi, India.

Jadia C. D. and M. H. Fulekar, (2009). Phytoremediation of heavy metals: Recent Techniques, African Journal, vol.7, no. 5, pp. 547-558.

Jadia, CD, Fulekar, MH. (2009). Phytoremediation of heavy metals: Recent techniques, Afri. J. Biotechnol 8(6):921 - 928.

Kabata-Pendias, A, Pendias, H: Trace Metals in Soils and Plants. (2001). 3rd Edition, CRC Press, Boca Raton, FL.

Kochian, L. (1996): In International Phytoremediation Conference, Southborough, MA. May 8- 10.

Mc Grath S.P. (1998). Phytoextraction for soil remediation. In: Brooks, R.R., ed. Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. New York, CAB International, 1998, 261-288.

Meera M. and Agamuthu P. (2012). Phytoextraction of As and Fe using H. cannabinus from soil polluted with landfill leachate. International Journal of Phytoremediation. (14): 2, 186- 199.

Mueller, B., Rock, S., Gowswami, Dib, Ensley, D. (1999): Phytoremediation Decision Tree. - Prepared by - Interstate Technology and Regulatory Cooperation Work Group; pp 1-36

Newmann, LA, Strand, SE, Choe, N, Duffy, J, Ekuan, G. (1997). Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ. Sci. Technol 31:1062 - 1067.

Nizam M. Uddin., M. Wahid-U-Zzaman2, M. Mokhlesur Rahman2 and Jang-Eok Kim, (2016). Phytoremediation Potential of Kenaf (Hibiscus cannabinus L.), Mesta (Hibiscus sabdariffa L.), and Jute (Corchorus capsularis L.) in Arsenic-contaminated Soil. Korean Journal of Environmental Agriculture. 35(2):111-120.

Oyegun CU.(1993). Land degradation and coastal environment of Nigeria. CATENA. 20: 215- 225.

Pais, I. and J.R. Jones, Jr., (2000). The Handbook of Trace Elements. CRC Press, Boca Raton, Florida, USA

Paridah M.T., Amel B. A., Syeed O.A.S. and Zakiah A. (2011). Rettting process of some best plant fibres and its effect on fibre quality: A Review. BioResources, 6(4): 5260-5281.

Prasad M.N.V. and H.M.D. Freitas, (2003). Metal hyperaccumulation in plants"”Biodiversity prospecting for phytoremediation technology. Electron J Biotechnol. 93(1), 285-321.

Raskin, I, Kumar, P.B.A.N., Dushenkov, S. and Salt, D. (1994): Bioconcentration of heavy metals by plants. - Current Opinion Biotechnology 5; 285-290.

Raskin, I., and Ensley, B. D. (2000). Recent developments for in situ treatment of metal contaminated soils. In: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons Inc., New York. Available at: http//clu-n.org/techfocus

Sadowsky M. J. (1999). Phytoremediation: Past promises and future practices,"– in Proc. the 8th International symposium on Microbial Ecology, Halifex, Canada, pp. 1-7.

Salt D. E., Smith R. D. and Raskin I. (1998). Phytoremediation, Annual Rev. Plant Physiol Plant Molec. Biol. 49, 643 - 668.

Suresh, B., Ravishankar, G.A. (2004). Phytoremediation-a novel and promising approach for environmental clean-up. Crit Rev Biotechnol. 24(2-3), 97-124.

Susarta S., V. F. Medina, and S. C. McCutcheon , (2008) . Phytoremediation: An ecological solution to organic chemical contamination,"– Ecological Engineering, vol. 18, no. 5, pp. 647-658, 2008.

Suszcynsky E. M. and J. R. Shann, (1995). Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes, Environmental Toxicology and Chemistry, vol. 14(1), 61-67.

Turgut C. (2003). The contamination with organochlorine pesticides and heavy metals in surface water in Kucuk Menderes River in Turkey, 2000-2002. Environ. Int. 29: 29-32.

United States Environmental Protection Agency (USEPA). (2000). Introduction to Phytoremediation. EPA 600/R-99/107, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.

United States Protection Agency Reports (2000): Introduction to Phytoremediation. - EPA 600/R-99/107.

Vysloužilová, M, Tlustoš, P, Száková J, Pavlíková, D. (2003). As, Cd, Pb and Zn uptake by Salix spp. Clones grown in soils enriched by high loads of these elements. Plant Soil Environ 49:191 - 196. 2003.

Waziri M., U. Abdullahi, A. A. Audu, and Kalimullah, (2016). Phytoremediation Potentials of Selected Plants in Industrially Contaminated Soils. International Journal of Environmental Science and Development, Vol. 7, No. 10, 757-762

Wozny A, Schneider J, Gwozdz EA. 1995. The effects of lead and kinetin on greening barley leaves. Biol Plant 37: 541-552.

Wuana R.A. and F.E. Okieimen, (2010). Phytoremediation Potential of Maize (Zea mays L.). A Review. African Journal of General Agriculture. Vol. 6, No. 4, 275-287

Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulators of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environment International, 31(5), 755-762.

Zhang B. Y., J. S. Zhen, and R. G. Sharp, (2010). Phytoremediation in engineered wetlands: Mechanism and Applications,"– Procedia Environmental Science, vol. 2, pp. 1315-1325.

Zhuang, P., Ye, Z. H., Lan, C. Y., Xie, Z. W, and Hsu, W. S. (2005). Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant Soil 276:153 - 162.

Downloads

Published

2019-12-20

How to Cite

Mukhtar, Y., Galalain, A., Abdu, K., Tukur, S., Bashir, R. A., Abdulkadir, A., & Habib, A. (2019). A Comprehensive Review on Phytoremediation Potentials of Hibiscus cannabinus Linn. (Kenaf): Mechanisms, Benefits and Prospects. American Journal of Natural Sciences, 2(1), 10–23. https://doi.org/10.47672/ajns.441

Issue

Section

Articles