Composition of Bioactive Compounds from Potato Peel Waste Extracts by Decoction and Indirect Ultra-Sound Assisted Extraction Methods

Authors

  • Theoneste Hagenimana Department of Dairy, Food Science and Technology, Egerton University, Kenya
  • Joseph Ochieng Anyango Department of Dairy, Food Science and Technology, Egerton University, Kenya
  • Patrick Simiyu Muliro Department of Dairy, Food Science and Technology, Egerton University, Kenya
  • Clement Bitwayiki Department of Food Science and Technology, University of Rwanda, Musanze,

DOI:

https://doi.org/10.47672/ajfsn.2367

Keywords:

Bioactive Compounds, Extraction Methods, Potato Peel Wastes

Abstract

Purpose: The aim of this study was to obtain potato peel extracts by a conventional, “decoction (DT)” and novel, “indirect ultra-sound assisted extraction (DuAE)” methods, and determine the composition of potato peel extracts in bioactive compounds.

Materials and Methods: To obtain peels extracts, both DT and DuAE extraction methods were used to extract bioactive compounds from peel wastes of five potato cultivars i.e. Kinigi, Kuruseke, Kirundo, Peco, and T58, locally grown in Rwanda. Four types of bioactive compounds, i.e. glycolakaloids (TGC), total phenolics (TPC), total flavonoids (TFC), and total anthocyanins (TAC) were determined in each potato peel extract. Data in concentration of bioactive compounds was subjected to a two factor ANOVA (p ≤ 0.05) to determine the effect of potato cultivars and extraction methods on the content of bioactive compounds.

Findings: Results showed that the composition ranges of bioactive compounds were 0.47- 11.83 mg SE/100g, 60.12 -1170.01 mg GAE/100g, 50.39- 873.26 mg QE/100g, and 0.71- 8.73 mg CGE/100 g per dry weight for TGC, TPC, TFC, and TAC, respectively. The composition of bioactive compounds in potato peel extracts was significantly (p<0.001) affected by both potato cultivar and extraction method. Generally, potato peel extracts from Kirundo and Kuruseke cultivars had the lowest and the highest amount of bioactive compounds, respectively; whereas the DuAE method performed better than DT method.

Implications to Theory, Practice and Policy: Results from this study revealed the significant role of extraction methods used for bioactive compounds. An investigation on the optimization and improvement of extraction processes used in this study was recommended.

Downloads

Download data is not yet available.

References

Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M., & Verardo, V. (2016). Phenolic Compounds in the Potato and Its Byproducts: An Overview. International Journal of Molecular Sciences, 17(6), 835. https://doi.org/10.3390/ijms17060835

Albishi, T., John, J. A., Al-Khalifa, A. S., & Shahidi, F. (2013). Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal of Functional Foods, 5(2), 590–600. https://doi.org/10.1016/j.jff.2012.11.019

Alvarez, V. H., Cahyadi, J., Xu, D., & Saldaña, M. D. A. (2014). Optimization of phytochemicals production from potato peel using subcritical water: Experimental and dynamic modeling. The Journal of Supercritical Fluids, 90, 8–17. https://doi.org/10.1016/j.supflu.2014.02.013

Alves-Filho, E. G., Sousa, V. M., Ribeiro, P. R. V., Rodrigues, S., De Brito, E. S., Tiwari, B. K., & Fernandes, F. A. N. (2018). Single-stage ultrasound-assisted process to extract and convert α-solanine and α-chaconine from potato peels into β-solanine and β-chaconine. Biomass Conversion and Biorefinery, 8(3), 689–697. https://doi.org/10.1007/s13399-018-0317-7

Al-Weshahy, A., & Rao, V. A. (2009). Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Research International, 42(8), 1062–1066. https://doi.org/10.1016/j.foodres.2009.05.011

Amado, I. R., Franco, D., Sánchez, M., Zapata, C., & Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165, 290–299. https://doi.org/10.1016/j.foodchem.2014.05.103

Apel, C., Lyng, J. G., Papoutsis, K., Harrison, S. M., & Brunton, N. P. (2020). Screening the effect of different extraction methods (ultrasound-assisted extraction and solid–liquid extraction) on the recovery of glycoalkaloids from potato peels: Optimisation of the extraction conditions using chemometric tools. Food and Bioproducts Processing, 119, 277–286. https://doi.org/10.1016/j.fbp.2019.06.018

Arun, K. B., Chandran, J., Dhanya, R., Krishna, P., Jayamurthy, P., & Nisha, P. (2015). A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Bioscience, 9, 36–46. https://doi.org/10.1016/j.fbio.2014.10.003

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

Bahadori, S., Giglou, M. T., Esmaielpour, B., Dehdar, B., Estaji, A., Hano, C., Gohari, G., Vergine, M., & Vita, F. (2023). Antioxidant Compounds of Potato Breeding Genotypes and Commercial Cultivars with Yellow, Light Yellow, and White Flesh in Iran. Plants, 12(8), 1707. https://doi.org/10.3390/plants12081707

Ben-Jeddou, K., Kammoun, M., Hellström, J., Gutiérrez‐Quequezana, L., Rokka, V Gargouri‐Bouzid, R., Ellouze‐Chaabouni, S., & Nouri‐Ellouz, O. (2021). Profiling beneficial phytochemicals in a potato somatic hybrid for tuber peels processing: Phenolic acids and anthocyanins composition. Food Science & Nutrition, 9(3), 1388–1398. https://doi.org/10.1002/fsn3.2100

Brown, C. R., Culley, D., Bonierbale, M., & Amorós, W. (2007). Anthocyanin, Carotenoid Content, and Antioxidant Values in Native South American Potato Cultivars. HortScience, 42(7), 1733–1736. https://doi.org/10.21273/HORTSCI.42.7.1733

Calcio Gaudino, E., Colletti, A., Grillo, G., Tabasso, S., & Cravotto, G. (2020). Emerging Processing Technologies for the Recovery of Valuable Bioactive Compounds from Potato Peels. Foods, 9(11), 1598. https://doi.org/10.3390/foods9111598

Campos, H., & Ortiz, O. (Eds.). (2020). The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. Springer International Publishing. https://doi.org/10.1007/978-3-030-28683-5

Cardoso, L., Serrano, C., Quintero, E., López, C., Antezana, R., & Martínez De La Ossa, E. (2013). High Pressure Extraction of Antioxidants from Solanum stenotomun Peel. Molecules, 18(3), 3137–3151. https://doi.org/10.3390/molecules18033137

Datir, S. S., Yousf, S., Sharma, S., Kochle, M., Ravikumar, A., & Chugh, J. (2020). Cold storage reveals distinct metabolic perturbations in processing and non-processing cultivars of potato (Solanum tuberosum L.). Scientific Reports, 10(1), 6268. https://doi.org/10.1038/s41598-020-63329-5

de Andrade Lima, M., Andreou, R., Charalampopoulos, D., & Chatzifragkou, A. (2021). Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels. Applied Sciences, 11(8), 3410. https://doi.org/10.3390/app11083410

De Masi, L., Bontempo, P., Rigano, D., Stiuso, P., Carafa, V., Nebbioso, A., Piacente, S., Montoro, P., Aversano, R., D’Amelia, V., Carputo, D., & Altucci, L. (2020). Comparative Phytochemical Characterization, Genetic Profile, and Antiproliferative Activity of Polyphenol-Rich Extracts from Pigmented Tubers of Different Solanum tuberosum Varieties. Molecules, 25(1), 233. https://doi.org/10.3390/molecules25010233

Dhalsamant, K., Singh, C. B., & Lankapalli, R. (2022). A Review on Greening and Glycoalkaloids in Potato Tubers: Potential Solutions. Journal of Agricultural and Food Chemistry, 70(43), 13819–13831. https://doi.org/10.1021/acs.jafc.2c01169

Ebringerová, A., & Hromádková, Z. (2010). An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Open Chemistry, 8(2), 243–257. https://doi.org/10.2478/s11532-010-0006-2

Ezekiel, R., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato—A review. Food Research International, 50(2), 487–496. https://doi.org/10.1016/j.foodres.2011.04.025

Friedman, M., Huang, V., Quiambao, Q., Noritake, S., Liu, J., Kwon, O., Chintalapati, S., Young, J., Levin, C. E., Tam, C., Cheng, L. W., & Land, K. M. (2018). Potato Peels and Their Bioactive Glycoalkaloids and Phenolic Compounds Inhibit the Growth of Pathogenic Trichomonads. Journal of Agricultural and Food Chemistry, 66(30), 7942–7947. https://doi.org/10.1021/acs.jafc.8b01726

Friedman, M., Kozukue, N., Kim, H.-J., Choi, S.-H., & Mizuno, M. (2017). Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. Journal of Food Composition and Analysis, 62, 69–75. https://doi.org/10.1016/j.jfca.2017.04.019

Friedman, M., Roitman, J. N., & Kozukue, N. (2003). Glycoalkaloid and Calystegine Contents of Eight Potato Cultivars. Journal of Agricultural and Food Chemistry, 51(10), 2964–2973. https://doi.org/10.1021/jf021146f

Frontuto, D., Carullo, D., Harrison, S. M., Brunton, N. P., Ferrari, G., Lyng, J. G., & Pataro, G. (2019). Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food and Bioprocess Technology, 12(10), 1708–1720. https://doi.org/10.1007/s11947-019-02320-z

Global Monitor. (2020). Processed Potato Market Trends, Statistics, Growth, and Forecasts. https://www.globalmonitor.us/product/processed-potato-market (Accessed on 03 March 2023)

Gonçalves, M. L. M. B. B., & Maximo, G. J. (2023). Circular Economy in the Food Chain: Production, Processing and Waste Management. Circular Economy and Sustainability, 3(3), 1405–1423. https://doi.org/10.1007/s43615-022-00243-0

Helal, M. M., El- Adawy, T. A., El-Beltagy, A. E., El-Bedawy, A. A., & Youssef, S. M. (2020). Evaluation of potato peel extract as a source of antioxidant and antimicrobial substances. 5(6), 79–90.

Hill, D., Nelson, D., Hammond, J., & Bell, L. (2021). Morphophysiology of Potato (Solanum tuberosum) in Response to Drought Stress: Paving the Way Forward. Frontiers in Plant Science, 11, 597554. https://doi.org/10.3389/fpls.2020.597554

Hossain, M., Rawson, A., Aguiló-Aguayo, I., Brunton, N., & Rai, D. (2015). Recovery of Steroidal Alkaloids from Potato Peels Using Pressurized Liquid Extraction. Molecules, 20(5), 8560–8573. https://doi.org/10.3390/molecules20058560

International Potato Center (CIP). (2020). Potato facts and figures. https://cipotato.org/potato/potato-facts-and-figures/ (accessed on 9 November 2021)

Jimenez-Champi, D., Romero-Orejon, F. L., Moran-Reyes, A., Muñoz, A. M., & Ramos-Escudero, F. (2023). Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: A review. CyTA - Journal of Food, 21(1), 418–432. https://doi.org/10.1080/19476337.2023.2213746

Jin, C.-Y., Liu, H., Xu, D., Zeng, F.-K., Zhao, Y.-C., Zhang, H., & Liu, G. (2018). Glycoalkaloids and phenolic compounds in three commercial potato cultivars grown in Hebei, China. Food Science and Human Wellness, 7(2), 156–162. https://doi.org/10.1016/j.fshw.2018.02.001

Joly, N., Souidi, K., Depraetere, D., Wils, D., & Martin, P. (2021). Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity. Molecules, 26(1), 177. https://doi.org/10.3390/molecules26010177

Kaneria, M., Kanani, B., & Chanda, S. (2012). Assessment of effect of hydroalcoholic and decoction methods on extraction of antioxidants from selected Indian medicinal plants. Asian Pacific Journal of Tropical Biomedicine, 2(3), 195–202. https://doi.org/10.1016/S2221-1691(12)60041-0

Khanal, S., Karimi, K., Majumdar, S., Kumar, V., Verma, R., Bhatia, S. K., Kuca, K., Esteban, J., & Kumar, D. (2023). Sustainable utilization and valorization of potato waste: State of the art, challenges, and perspectives. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04521-1

Kipkoech, K. G., Fidahussein Dossaji, S., & Onzere Amugune, N. (2018). Changes in Phytochemical Content During Different Growth Stages in Tubers of Five Varieties of Potato (Solanum Tuberosum L.). Current Research in Nutrition and Food Science Journal, 6(1), 12–22. https://doi.org/10.12944/CRNFSJ.6.1.02

Kondamudi, N., Smith, J. K., & McDougal, O. M. (2017). Determination of Glycoalkaloids in Potatoes and Potato Products by Microwave Assisted Extraction. American Journal of Potato Research, 94(2), 153–159. https://doi.org/10.1007/s12230-016-9558-9

Manousi, N., Sarakatsianos, I., & Samanidou, V. (2019). Extraction Techniques of Phenolic Compounds and Other Bioactive Compounds From Medicinal and Aromatic Plants. In Engineering Tools in the Beverage Industry (pp. 283–314). Elsevier. https://doi.org/10.1016/B978-0-12-815258-4.00010-X

Martinez-Fernandez, J. S., Seker, A., Davaritouchaee, M., Gu, X., & Chen, S. (2021). Recovering Valuable Bioactive Compounds from Potato Peels with Sequential Hydrothermal Extraction. Waste and Biomass Valorization, 12(3), 1465–1481. https://doi.org/10.1007/s12649-020-01063-9

Martínez-Inda, B., Esparza, I., Moler, J. A., Jiménez-Moreno, N., & Ancín-Azpilicueta, C. (2023). Valorization of agri-food waste through the extraction of bioactive molecules. Prediction of their sunscreen action. Journal of Environmental Management, 325, 116460. https://doi.org/10.1016/j.jenvman.2022.116460

Mohdaly, A. A. A., Hassanien, M. F. R., Mahmoud, A., Sarhan, M. A., & Smetanska, I. (2013). Phenolics Extracted from Potato, Sugar Beet, and Sesame Processing By-Products. International Journal of Food Properties, 16(5), 1148–1168. https://doi.org/10.1080/10942912.2011.578318

Ndungutse, V. (2019). PHYSICO-CHEMICAL QUALITIES OF SELECTED POTATO (Solanum tuberosum L.) CULTIVARS AND THEIR SUITABILITY FOR PRODUCTS DIVERSIFICATION IN RWANDA [A Thesis Submitted to the Graduate School in Partial Fulfilment of the Requirements for the Doctor of Philosophy Degree in Food Science]. Egerton University.

Ogbu, C. C., & Okechukwu, N. S. (2023). Agro-Industrial Waste Management: The Circular and Bioeconomic Perspective. In F. Ahmad & M. Sultan (Eds.), Agricultural Waste—New Insights. IntechOpen. https://doi.org/10.5772/intechopen.109181

Oleszek, M., Kowalska, I., Bertuzzi, T., & Oleszek, W. (2023). Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules, 28(1), 342. https://doi.org/10.3390/molecules28010342

Pacifico, D., Lanzanova, C., Pagnotta, E., Bassolino, L., Mastrangelo, A. M., Marone, D., Matteo, R., Lo Scalzo, R., & Balconi, C. (2021a). Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection—A Review. Molecules, 26(8), 2174. https://doi.org/10.3390/molecules26082174

Pacifico, D., Lanzanova, C., Pagnotta, E., Bassolino, L., Mastrangelo, A. M., Marone, D., Matteo, R., Lo Scalzo, R., & Balconi, C. (2021b). Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection—A Review. Molecules, 26(8), 2174. https://doi.org/10.3390/molecules26082174

Palos-Hernández, A., Gutiérrez Fernández, M. Y., Escuadra Burrieza, J., Pérez-Iglesias, J. L., & González-Paramás, A. M. (2022). Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sustainable Chemistry and Pharmacy, 29, 100773. https://doi.org/10.1016/j.scp.2022.100773

Pathak, P. D., Mandavgane, S. A., Puranik, N. M., Jambhulkar, S. J., & Kulkarni, B. D. (2018). Valorization of potato peel: A biorefinery approach. Critical Reviews in Biotechnology, 38(2), 218–230. https://doi.org/10.1080/07388551.2017.1331337

Rasheed, H., Ahmad, D., & Bao, J. (2022). Genetic Diversity and Health Properties of Polyphenols in Potato. Antioxidants, 11(4), 603. https://doi.org/10.3390/antiox11040603

Riciputi, Y., Diaz-de-Cerio, E., Akyol, H., Capanoglu, E., Cerretani, L., Caboni, M. F., & Verardo, V. (2018). Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chemistry, 269, 258–263. https://doi.org/10.1016/j.foodchem.2018.06.154

Rodríguez-Martínez, B., Gullón, B., & Yáñez, R. (2021). Identification and Recovery of Valuable Bioactive Compounds from Potato Peels: A Comprehensive Review. Antioxidants, 10(10), 1630. https://doi.org/10.3390/antiox10101630

Rowayshed, G., Sharaf, A. M., El-Faham, S. Y., Ashour, M. M. S., & Zaky, A. A. (2015). Utilization of potato peels extract as source of phytochemical in biscuits. Journal of Basic and Applied Research International, 8(3), 190–201.

Rytel, E., Tajner-Czopek, A., Aniołowska, M., & Hamouz, K. (2013). The influence of dehydrated potatoes processing on the glycoalkaloids content in coloured-fleshed potato. Food Chemistry, 141(3), 2495–2500. https://doi.org/10.1016/j.foodchem.2013.04.131

Samotyja, U. (2019). Potato Peel as a Sustainable Resource of Natural Antioxidants for the Food Industry. Potato Research, 62(4), 435–451. https://doi.org/10.1007/s11540-019-9419-2

Sampaio, S. L., Petropoulos, S. A., Dias, M. I., Pereira, C., Calhelha, R. C., Fernandes, Â., Leme, C. M. M., Alexopoulos, A., Santos-Buelga, C., Ferreira, I. C. F. R., & Barros, L. (2021). Phenolic composition and cell-based biological activities of ten coloured potato peels (Solanum tuberosum L.). Food Chemistry, 363, 130360. https://doi.org/10.1016/j.foodchem.2021.130360

Schieber, A., & Saldaña, M. D. A. (2009). Potato peels: A source of nutritionally and pharmacologically interesting compounds - A review. https://doi.org/10.7939/R33T9DM0H

Sepelev, I., & Galoburda, R. (2015). INDUSTRIAL POTATO PEEL WASTE APPLICATION IN FOOD PRODUCTION: A REVIEW. RESEARCH FOR RURAL DEV ELOPMENT, 1, 131–136.

Silva-Beltran, N. P., Chaidez-Quiroz, C., Lopez-Cuevas, O., Ruiz-Cruz, S., Lopez-Mata, M. A., Del-Toro-Sanchez, C. L., Marquez-Rios, E., & Ornelas-Paz, J. D. J. (2017a). Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses. Journal of Microbiology and Biotechnology, 27(2), 234–241. https://doi.org/10.4014/jmb.1606.06007

Singh, B., Singh, J., Singh, J. P., Kaur, A., & Singh, N. (2020). Phenolic compounds in potato (Solanum tuberosum L.) peel and their health‐promoting activities. International Journal of Food Science & Technology, 55(6), 2273–2281. https://doi.org/10.1111/ijfs.14361

Singh, J., & Kaur, L. (2009). Advances in potato chemistry and technology. Academic.

Singh, P. P., & Saldaña, M. D. A. (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Research International, 44(8), 2452–2458. https://doi.org/10.1016/j.foodres.2011.02.006

Susarla, N. (2019). Benefits of Potato Peels. Acta Scientific Nutritional Health, 3(9), 147–153. https://doi.org/10.31080/ASNH.2019.03.0418

Tajner-Czopek, A., Kita, A., & Rytel, E. (2021). Characteristics of French Fries and Potato Chips in Aspect of Acrylamide Content—Methods of Reducing the Toxic Compound Content in Ready Potato Snacks. Applied Sciences, 11(9), 3943. https://doi.org/10.3390/app11093943

United Nations. (2015). Transforming our world: The 2030 Agenda forSustainable Development. https:// sdgs.un.org/2030agenda. (Accessed 18 May 2024)

Uwineza, P. A., & Waśkiewicz, A. (2020). Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules, 25(17), 3847. https://doi.org/10.3390/molecules25173847

Venturi, F., Bartolini, S., Sanmartin, C., Orlando, M., Taglieri, I., Macaluso, M., Lucchesini, M., Trivellini, A., Zinnai, A., & Mensuali, A. (2019). Potato Peels as a Source of Novel Green Extracts Suitable as Antioxidant Additives for Fresh-Cut Fruits. Applied Sciences, 9(12), 2431. https://doi.org/10.3390/app9122431

Wang, S., Lin, A. H.-M., Han, Q., & Xu, Q. (2020). Evaluation of Direct Ultrasound-Assisted Extraction of Phenolic Compounds from Potato Peels. Processes, 8(12), 1665. https://doi.org/10.3390/pr8121665

Yin, L., Chen, T., Li, Y., Fu, S., Li, L., Xu, M., & Niu, Y. (2016). A Comparative Study on Total Anthocyanin Content, Composition of Anthocyanidin, Total Phenolic Content and Antioxidant Activity of Pigmented Potato Peel and Flesh. Food Science and Technology Research, 22(2), 219–226. https://doi.org/10.3136/fstr.22.219

Zarzecka, K., Gugała, M., & Mystkowska, I. (2013). Glycoalkaloid contents in potato leaves and tubers as influenced by insecticide application   Plant, Soil and Environment, 59(No. 4), 183–188. https://doi.org/10.17221/763/2012-PSE

Zhu, X., Cheng, Y., Chen, P., Peng, P., Liu, S., Li, D., & Ruan, R. (2016). Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innovative Food Science & Emerging Technologies, 37, 91–97. https://doi.org/10.1016/j.ifset.2016.08.006

Downloads

Published

2024-08-29

How to Cite

Hagenimana, T., Anyango, J. O., Muliro, P. S., & Bitwayiki, C. (2024). Composition of Bioactive Compounds from Potato Peel Waste Extracts by Decoction and Indirect Ultra-Sound Assisted Extraction Methods. American Journal of Food Sciences and Nutrition, 6(2), 58–77. https://doi.org/10.47672/ajfsn.2367

Issue

Section

Articles

Most read articles by the same author(s)