Improve the Performance of Perovskite-Based Solar Cells Using Buffer Layers and Reflective Layers by Simulation Software SCAPS-1D
DOI:
https://doi.org/10.47672/ejps.2616Abstract
Purpose: This study aims to improve the performance of perovskite FAPbI 3 (formamidinium tri-iodide)-based solar cells by modifying some of the solar cell layers.
Materials and Methods: In this research SCAPS 1-D program was relied upon in the approved solar cell simulation which is a computer software used to simulate one-dimensional solar cell designed at the University of Gent Electronics and Information Systems in Belgium.
Findings: In this study, suitable buffer layers were added, which led to an improvement in the cell's output .The best buffer layer was STO, which gave the best results of η (27.34%), VOC (1.30V), JSC (28.35 mA/cm 2 ), and FF (73.66%). Then the back reflection layer was changed. An increase in open-circuit voltage, short-circuit current, and fill factor was observed. The layer consisting of CuScN (copper selenium nitride) gave the best results of JSC (28.35 mA/cm 2 ), VOC (1.45 V), FF (75.85%), and conversion efficiency η (31.21%). Subsequently, a second absorbing layer was added to the cell between the reflection layer and absorbing layer, leading to an increase in the solar cell's conversion efficiency. The layer that gave the best results was Sb2Se3 (antimony selenide), achieving JSC (38.71 mA/cm 2 ), VOC (1.45 V), FF (78.45%), and conversion efficiency (44.29%).
Implications to Theory, Policy and Practice:The compounds (CdS,STO,TiO2,V2O5,WS2,ZnO) can be used as a buffer layer with a power gap between (1.8-3.3 eV) and have a suitable interface for the FAPbI3- based solar cell.
Downloads
References
Shaikh, S. F., Kwon, H. C., Yang, W., Mane, R. S., & Moon, J. (2018). Performance enhancement of mesoporous TiO2-based perovskite solar cells by ZnS ultrathin-interfacial modification layer. Journal of Alloys and Compounds, 738, 405-414.
Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2014). Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced functional materials, 24(1), 151-157.
Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398.
Sharma, R., Sharma, A., Agarwal, S., & Dhaka, M. S. (2022). Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy.
Gan, Y., Zhao, D., Qin, B., Bi, X., Liu, Y., Ning, W., ... & Jiang, Q. (2022). Numerical Simulation of High-Performance CsPbI3/FAPbI3 Heterojunction Perovskite Solar Cells. Energies, 15(19), 7301.
Kanoun, M. B., Kanoun, A. A., Merad, A. E., & Goumri-Said, S. (2021). Device design optimization with interface engineering for highly efficient mixed cations and halides perovskite solar cells. Results in Physics, 20, 103707.
Noman, M., Shahzaib, M., Jan, S. T., Shah, S. N., & Khan, A. D. (2023). 26.48% efficient and stable FAPbI 3 perovskite solar cells employing SrCu 2 O 2 as hole transport layer. RSC advances, 13(3), 1892-1905.
Zhang, C., Wang, Y., Lin, X., Wu, T., Han, Q., Zhang, Y., & Han, L. (2021). Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A, 9(3), 1372- 1394.
Wu, T., Qin, Z., Wang, Y., Wu, Y., Chen, W., Zhang, S., ... & Han, L. (2021). The main progress of perovskite solar cells in 2020–2021. Nano-Micro Letters, 13, 1-18.
Al-Saqa, R. H., & Jassim, I. K. (2022). Effect of substrate temperature on the optical and structural properties of CaZnO3 perovskite thin films. Journal of Nanomaterials & Biostructures, 18(1), 165-172.
Najim, A. H., & Saleh, A. N. (2019). Study effect of window and BSF layers on the properties of the CZTS/CZTSe solar cell by SCAPS–1D. Tikrit Journal of Pure Science, 24(3), 77-83.
McCandless, B.; Hegedus, S. (1991). Photovoltaic Specialists Conference. Solar EnergyMaterials and Solar Cells .78(3). 967–972.
Zhen-Qi, L.; Ming, N. and Xiao-Dong, F. (2020). Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Express. 7(2) .016416.
Decock, K., Khelifi, S., & Burgelman, M. (2011). Modelling multivalent defects in thin film solar cells. Thin Solid Films, 519(21), 7481-7484.
Al-Saqa, R. H., Jassim, I. K., & Uonis, M. M. (2023). Effect of KCl on the optical and structural properties of CaZnO 3 perovskite thin films. Ochrona przed Korozją, (8), 243-246.
Hameed, K. Y., Faisal, B., Hanae, T., Mari, S. B., Saira, B., & Kaim, K. N. A. (2019). Modelling of novel-structured copper barium tin sulphide thin film solar cells. Bulletin of Materials Science, 42, 1-8.
Baig, F. (2019). Numerical analysis for efficiency enhancement of thin film solar cells
.PhD,University Holand.
Kajal, M. P.; Fermi, H. I. & Joseph, J.P. (2018). Thickness optimization of CdS/ZnO hybrid buffer layer in CZTSe thin film solar cells using SCAPS simulation program. Materials Research Innovations.12(7).231-235.
Burgleman et al, no May. 2014. SCAPS manual,
Ali, A. M., Alsaqa, R., & Sultan, N. S. (2022). Study of Thermodynamic Properties of Monoclinic Sulfur (Sβ) Under High Pressure Using Three Different Equations of State for the Treatment Scabies in Dermatology. International Journal of Thermodynamics, 25(2), 33-38.
Karthick, S., Velumani, S., & Bouclé, J. (2020). Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Solar Energy, 205, 349-357.
Guo, H.; Li, Y.;Guo, X.; Yuan, N. & Ding, J. (2018) .Effect of silicon doping on electrical and optical properties of stoichiometric Cu2ZnSnS4 solar cells .Physics B: Condensed Matter.
(4). 9-15.
Gan, Z., Zhao, L., Sun, X., Xu, K., Li, H., & Wei, J. (2022). Influence of Formamidine Formate Doping on Performance and Stability of FAPbI3-Based Perovskite Solar Cells. Crystals, 12(9), 1194.
Mebarkia, C., Dib, D., Zerfaoui, H., & Belghit, R. (2016). Energy efficiency of a photovoltaic cell based thin films CZTS by SCAPS. Journal of Fundamental and Applied Sciences, 8(2), 363- 371.
Al-saqa, Al-sheikh, (2013). Theoretical High pressure Study for Evaluation of Spinodal Pressure and Phonon Frequency Spectrum of Silver.
Raoui, Y., Ez-Zahraouy, H., Tahiri, N., El Bounagui, O., Ahmad, S., & Kazim, S. (2019). Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts:Simulation study. Solar Energy, 193, 948-955.
Biswas, S. K., Sumon, M. S., Sarker, K., Orthe, M., & Ahmed, M. M. (2023). A Numerical Approach to Analysis of an Environment-Friendly Sn-Based Perovskite Solar Cell with SnO2 Buffer Layer Using SCAPS-1D. Advances in Materials Science and Engineering, 2023.
Raoui, Y., Ez-Zahraouy, H., Tahiri, N., El Bounagui, O., Ahmad, S., & Kazim, S. (2019). Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Solar Energy, 193, 948-955.
Hussain, S. S., Riaz, S., Nowsherwan, G. A., Jahangir, K., Raza, A., Iqbal, M. J., ... & Naseem,S. (2021). Numerical modeling and optimization of lead-free hybrid double perovskite solar cell by using SCAPS-1D. Journal of Renewable Energy, 2021, 1-12.
McCandless, B.; Hegedus, S. (1991). Photovoltaic Specialists Conference. Solar EnergyMaterials and Solar Cells .78(3). 967–972.
Aleksandra, B;. Djuris,I. and Yu Hang, L. (2006). Optical Properties of ZnO Nanostructures
.small . 2 (8-9), 944 – 961
Olopade, M. A., Oyebola, O. O., & Adeleke, B. S. (2012). Investigation of some materials as buffer layer in copper zinc tin sulphide (Cu2ZnSnS4) solar cells by SCAPS-1D. Advances in Applied Science Research, 3(6), 3396-3400.
Tousif, M. N., Mohammad, S., Ferdous, A. A., & Hoque, M. A. (2018). Investigation of different materials as buffer layer in CZTS solar cells using SCAPS. J. Clean Energy Technol, 6, 293-296.
Zhou, W. J., Jin, K. J., Guo, H. Z., He, X., He, M., Xu, X. L., ... & Yang, G. Z. (2015).
Significant enhancement of photovoltage in artificially designed perovskite oxide structures. Applied Physics Letters, 106(13).
AL-sheikh, A. M., & AL-Saqa, R. H. Evaluation of High-Pressure Effect of Phonon Frequency Spectrum for Gold by Using Different Equations of State (EOS). Global Proceedings Repository, American Research Foundation, http://proceedings. sriweb. org ISSN, 2476, 58-278.
Najim, A. H.; & Saleh, A. N. (2019). Study effect of window and BSF layers on the properties of the CZTS/CZTSe solar cell by SCAPS–1D. Tikrit Journal of Pure Science.24(3). 77-83.
Chowdhury, T. A. (2023). Simulation Study of CuO-Based Solar Cell with Different Buffer Layers Using SCAPS-1D. Energy and Power Engineering, 15(9), 307-314.
Emon, E. I., Islam, A. M., Sobayel, M. K., Islam, S., Akhtaruzzaman, M., Amin, N., ... & Rashid,M. J. (2023). A comprehensive photovoltaic study on tungsten disulfide (WS2) buffer layer based CdTe solar cell. Heliyon, 9(3).
Naureen, Sadanand, Lohia, P., Dwivedi, D. K., & Ameen, S. (2022). A comparative study of quantum dot solar cell with two different ETLs of WS2 and IGZO using SCAPS-1D simulator. In Solar (Vol. 2, No. 3, pp. 341-353). MDPI.
Guo, H.; Li, Y.;Guo, X.; Yuan, N. & Ding, J. (2018) .Effect of silicon doping on electrical and optical properties of stoichiometric Cu2ZnSnS4 solar cells .Physics B: Condensed Matter.
(4). 9-15.
Büecheler S. F... (2010). Investigation of compound semiconductors as buffer-layer in thin film solar cells. PhD,University Zürich.
Kareem, S., Uonis, M., & Alsaqa, R. (2023). High-Pressure Calibration TiN Equation of State. International Journal of Thermodynamics, 1-7.
Mohammed, S. J. (2020). Simulation study of back surface and electron transport layers on Sb2Se3 solar Cell. Tikrit Journal of Pure Science, 25(6), 103-113.
Li, Z. Q., Ni, M., & Feng, X. D. (2020). Simulation of the Sb2Se3 solar cell with a hole transport layer. Materials Research Express, 7(1), 016416.
Rafee Mahbub, M., Islam, S., Anwar, F., Satter, S. S., & Ullah, S. M. (2016). Simulation of CZTS thin film solar cell for different buffer layers for high efficiency performance. South Asian Journal of Engineering and Technology, 2(52), 1-10.
Zhen-Qi, L.; Ming, N. and Xiao-Dong, F. (2020). Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Express. 7(2) .016416.
Rau, U.; Schmidt, M.; Jasenek, A.; Hanna, G.; andSchock, H. W. (2011). Electrical Characterization Of Cu (In,Ga)Se2 Thin-Film Solar Cells and the Role of Defects for the Device Performance. Solar EnergyMaterials and Solar Cells. 67(4). 37-43
Saleh, M. M., Khemakhem, H., Jassim, I. K., & Al-Saqa, R. H. (2024). Structure and mechanical properties of cermet Ni-Al/MSZ thick coating prepared by flame spraying technique. Ochrona przed Korozją.
Sajid, S., Alzahmi, S., Salem, I. B., Park, J., & Obaidat, I. M. (2023). Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints. Nanomaterials, 13(6), 983
Hussain, S. S., Riaz, S., Nowsherwan, G. A., Jahangir, K., Raza, A., Iqbal, M. J., ... & Naseem,
S. (2021). Numerical modeling and optimization of lead-free hybrid double perovskite solar cell by using SCAPS-1D. Journal of Renewable Energy, 2021, 1-12.
Duha, A. U., & Borunda, M. F. (2022). Optimization of a Pb-free all-perovskite tandem solar cell with 30.85% efficiency. Optical Materials, 123, 111891
. Li, K., Wang, S., Chen, C., Kondrotas, R., Hu, M., Lu, S., ... & Tang, J. (2019). 7.5% n–i–p Sb2 Se 3 solar cells with CuSCN as a hole-transport layer. Journal of Materials Chemistry A, 7(16), 9665-9672
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muaamar A. Kamil

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.