Effect of Aluminium Heat sinks on the temPerature reduction and electrical efficiency of monocrystalline solar panels

Authors

  • Mfon R.E
  • Al Amri Z
  • Esaduwha S.O
  • Echo M.E.

DOI:

https://doi.org/10.47672/ejps.1020

Keywords:

heat sink, passive cooling method, solar cell temperature, fill factor, efficiency

Abstract

High temperatures could hinder the effective working of solar panels and negatively impact on their performance. This research employed the passive cooling method using aluminium heat sinks with diagonal and vertical fins with holes attached to the back of two monocrystalline solar panels to reduce their surface temperatures. While the vertical-fins heat sink produced a temperature reduction of 2.48  (5.9 %), the diagonal- fins heat sink only provided a temperature reduction of 1.25  (2.9 %). The short circuit current (  of the solar panels reduced at high temperatures and so did their fill factors (FF) and efficiencies. The highest efficiency of 6.8 % was for the module with the vertical-fins and holes while the lowest efficiency of 4.7 % was for the module with no heat sink. The module with the diagonal-fin heat sink had an efficiency of 6.5 %. This study confirms that heat sinks can provide some level of cooling for solar panels in order to improve on their electrical efficiencies.

Downloads

Download data is not yet available.

Author Biographies

Mfon R.E

Department of Physics, Federal University of Lafia, P.M.B. 146, Lafia, Nasarawa State, Nigeria.

Al Amri Z

Engineering Department, University of Technology and Applied Sciences, Salalah  Dhofar   Region, Thumrait Rd, 211 Salalah,  Sultanate of Oman.

Esaduwha S.O

Department of Physics, Federal College of Education, P.M.B. 2042 Yola, Adamawa State, Nigeria.

Echo M.E.

Department of Physics, Federal University of Lafia, P.M.B. 146, Lafia, Nasarawa State, Nigeria.

References

Adinoyi, M. J., & Said, S. A. (2013). Effect of dust accumulation on tha power output of Solar Photovoltaic Modules. Renewable energy, 60, 633-636. Retrieved from https://doi.org/10.1016/jrenene.2013.06.014

Arifin, Z., Suyitno, S., Tjahjana, D. D., Juwana, W. e., Putra, M. R., & Prabowo, A. R. (2020). The effect of Heat Sink Properties on Solar Cell Cooling Systems. Applied Sciences(10,7919;), 1-15. doi:doi:10.3390/app10217919

Buni, M. J., Al-Walie, A. A., & Al-Asadi, K. A. (2018). Effect of Solar Radiation on Photovoltaic Cell. International Research Journal of Advanced engineering and Science, 47-51.

Cander, S., Purohit, A., Nehra, A., Arvind, Nehra, S. P., & Dhaka, M. (2015). A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperatue. energy eports, 1(1), 104-109.

Cengel, Y. A. (2002). HEAT TRANSFER A practical approach (2nd Edition ed.). New York, USA: Scientific Reasearch Publishing.

Chegaar, M., Hamzaoui, A., Namoda, A., Petit, P., Aillerie, M., & Herguth, A. (2013). Effect of illumination intensity on solar cells parameters. energy Procedia, 36, 722-729.

Chen, H., Chen, X., Li, S., & Ding, H. (2019). Comparative Study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation. International journal of smart Grid and clean energy, 3(4), 374-379. doi:doi:10.12720/sgce.3.4.374-379

Cuce, E., Cuce, P. M., & Bali, T. (2013). An experiment analysis of illumination intensity and temperature dependvncy of photovoltaic cell parameter. App. energy 111, 374-382.

Khan, F., Singh, S., & Husain, M. O. (2010). Effect of illumination intensity on cell parameters of a silsicon solar cell. Solar energy Materials and Solar cells, 1473-1476. doi:10.1016/j.solmat.2010.03.018

Popovici, C. G., Hudisteanu, S. V., Mateescu, T. D., & Chereches, N.-C. (2016). Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks. energy Procedia, 85, 425-432.

Purohit, A., Sharma, A., Arvind, A. S., Nehra, S., & Dhaka, M. (2015). A study on photovoltaic parameters of monocrystalline silicon solar cell with cell temperature. energy reports, 1, 104-109.

Rahman, M., Islam, M., Karim, A. Z., & Ronee, A. H. (2012). Effects of Natural dust on the performance of PV Panels in Bangladesh. I.J. Modern education and Computer Science, 10, 26-32. doi:10.5815/ijmecs.2012.10.04

Rajput, U. J., & Yang, J. (2018). Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling. Renewable energy, 479-491.

Rakin, S. A., Suherman, S., Hasan , S., Rambe, A. H., & Gunawan. (2019). A Passive ooling System for Increasing efficiency of Solar Panel OutputJournal. Journal of Physics, 1373(2019)012017, 1-6. doi:doi:10.1088/1742-6596/1373/1/012017

Reich , N., Sark, W., Alsema, e., Lof, R., Schropp, R., Sinke, W., & Turkenburg, W. (2009). Crystalline Silicon Cell performance at low light intensity. Sol. energy Mater. Sol Cells, 93, 1471-1481.

Sharma, K., Gupta, A., Gopal, N., Dwivedi, G., & Kumar, S. (2018). Life Span and overall performance enhancement of Solar Photovoltaic cell using water as coolant: A recent review. Materials Today: Proceedings, 18202-18210. doi:https://doi.org/10.1016/j.matpr.2018.06.156

Soliman, A. M., Hassan, H., Ahmed, M., & Ookawara, S. (2018). A 3d model of the effect of using heat spreader on the performance of photovoltaic panel (PV). MATHEMATICS AND COMPUTErS IN SIMULATION (ELSEVIER), 1-14.

Downloads

Published

2022-05-09

How to Cite

Mfon , R. E., Al Amri, . Z., Esaduwha , S. O., & Echo , M. E. (2022). Effect of Aluminium Heat sinks on the temPerature reduction and electrical efficiency of monocrystalline solar panels. European Journal of Physical Sciences, 5(1), 55–65. https://doi.org/10.47672/ejps.1020

Issue

Section

Articles