A Comprehensive Review of Minerals and Vitamins Synergy: Impacts on Childhood and Adolescent Bone Development
DOI:
https://doi.org/10.47672/ajhmn.1534Keywords:
Bone Development, Combination Effects, Synergistic EffectsAbstract
Bone development during childhood and adolescence is a critical period that lays the foundation for lifelong skeletal health. Adequate nutrition, particularly the intake of minerals and vitamins, is pivotal in ensuring optimal bone growth and development. This comprehensive review examines the synergy between minerals and vitamins and its impact on childhood and adolescent bone development. The review begins with exploring the significance of bone health during the formative years, emphasizing the long-term implications of suboptimal bone development. The topic then turns to the precise roles essential vitamins, particularly vitamin D, and crucial minerals, such as calcium and phosphorus, play in maintaining healthy bones. It highlights their interdependent roles and the interconnected biochemical pathways facilitating bone growth. Moreover, this review sheds light on the factors influencing these nutrients' absorption, utilization, and bioavailability in children and adolescents. Genetic factors, dietary habits, lifestyle choices, and other variables are examined for their potential effects on bone health outcomes. Through a meticulous analysis of existing clinical studies and observations, the review evaluates the impact of minerals and vitamin synergy on bone density, mineral content, and overall bone strength in the pediatric population. Furthermore, it elucidates the potential benefits of optimizing these nutrients during crucial growth stages. Evidence-based recommendations are provided to guide parents, caregivers, and healthcare professionals in promoting healthy bone development in children and adolescents. The importance of tailored dietary strategies, supplementation when necessary, and lifestyle modifications is emphasized for maximizing bone health outcomes. In conclusion, this comprehensive review underscores the vital role of minerals and vitamin synergy in childhood and adolescent bone development. It consolidates existing knowledge, identifies research gaps, and sets the stage for future investigations in pediatric skeletal health. Ultimately, this work aims to raise awareness about the significance of adequate nutrition in shaping resilient and robust bones, contributing to the overall well-being of the younger generation. Here we will discuss the necessary bone nutrients, such as Phosphorus, Calcium, Vit D, Vit A, Vit K2, Zinc, Magnesium, and Branched Chain Amino Acid.
Downloads
References
Craig, W. J. (2009). Health effects of vegan diets. The American Journal of clinical nutri-tion, 89(5), S1627-S1633.
Kidd, P. M. (2010). Vitamins D and K as pleiotropic nutrients: clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern Med Rev, 15(3), 199-222.
Drabińska, N., Jarocka-Cyrta, E., Złotkowska, D., Abramowicz, P., & Krupa-Kozak, U. (2019). Daily oligofructose-enriched inulin intake impacts bone turnover markers but not the cytokine profile in pediatric patients with celiac disease on a gluten-free diet: A ran-domized, placebo-controlled pilot study results. Bone, 122, 184-192.
Daly, R. M., Duckham, R. L., & Gianoudis, J. (2014). Evidence for an interaction be-tween exercise and nutrition for improving bone and muscle health. Current osteoporosis reports, pp. 12, 219-226.
Viljakainen, H. T. (2016). Factors influencing bone mass accrual: focus on nutritional as-pects. Proceedings of the Nutrition Society, 75(3), 415-419.
Drabińska, N., Krupa-Kozak, U., Abramowicz, P., & Jarocka-Cyrta, E. (2018). The bene-ficial effect of oligofructose-enriched inulin on vitamin D and E status in children with celiac disease on a long-term gluten-free diet: a preliminary randomized, placebo-controlled nutritional intervention study. Nutrients, 10(11), 1768.
Lopes, K. G., Rodrigues, E. L., da Silva Lopes, M. R., do Nascimento, V. A., Pott, A., Guimarães, R. D. C. A. & Freitas, K. D. C. (2022). Adiposity metabolic consequences for adolescent bone health. Nutrients, 14(16), 3260.
Willems, H. M., van den Heuvel, E. G., Schoemaker, R. J., Klein-Nulend, J., & Bakker, A. D. (2017). Diet and exercise: a match made in bone. Current Osteoporosis Reports, 15, 555-563.
Costa, G., Vasconcelos, Q., Abreu, G., Albuquerque, A., Vilarejo, J., & Aragão, G. (2020). Fructans, especially fructooligosaccharides and inulin, cause changes in nutrient absorption in children and adolescents. Archives de Pdiatrie, 27(3), 166-169.
Park, C. Y., & Weaver, C. M. (2012). Vitamin D interactions with soy isoflavones on bone after menopause: a review. Nutrients, 4(11), 1610-1621.
Reza, S. M., Rasool, H., Mansour, S., & Abdollah, H. (2013). Effects of calcium and training on the development of bone density in children with Down syndrome. Research in developmental disabilities, 34(12), 4304-4309.
Scholz-Ahrens, K. E., Ade, P., Marten, B., Weber, P., Timm, W., AÏ‚il, Y., ... & Schrezenmeir, J. (2007). Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure"”the Journal of Nutrition, 137(3), 838S-846S.
Wongdee, K., Krishnamra, N., & Charoenphandhu, N. (2017). Derangement of calcium metabolism in diabetes mellitus: negative outcome from the synergy between impaired bone turnover and intestinal calcium absorption. The Journal of Physiological Scienc-es, 67(1), 71-81.
Maggini, S., Maldonado, P., Cardim, P., Fernandez Newball, C., & Sota Latino, E. (2017). Vitamins C, D and zinc: synergistic roles in immune function and infec-tions. Vitam Miner, 6(167), 2376-1318.
Chevalley, T., Bonjour, J. P., van Rietbergen, B., Ferrari, S., & Rizzoli, R. (2014). Track-ing of environmental determinants of bone structure and strength development in healthy boys: an eight"year follow-up study. Journal of Bone and Mineral Research, 29(10), 2182-2192.
Lee, J. H., Ha, A. W., Kim, W. K., & Kim, S. H. (2021). The combined effects of milk in-take and physical activity on bone mineral density in Korean adolescents. Nutri-ents, 13(3), 731.
Dunlop, K., Sarr, O., Stachura, N., Zhao, L., Nygard, K., Thompson, J. A., ... & Reg-nault, T. R. (2021). Differential and synergistic effects of low birth weight and western diet on skeletal muscle vasculature, mitochondrial lipid metabolism and insulin signalling in male Guinea pigs. Nutrients, 13(12), 4315.
Wasilewski-Masker, K., Kaste, S. C., Hudson, M. M., Esiashvili, N., Mattano, L. A., & Meacham, L. R. (2008). Bone mineral density deficits in childhood cancer survivors: long-term follow-up guidelines and literature review. Pediatrics, 121(3), e705-e713.
Agostini, D., Donati Zeppa, S., Lucertini, F., Annibalini, G., Gervasi, M., Ferri Marini, C., ... & Sestili, P. (2018). Muscle and bone health in postmenopausal women: role of protein and vitamin D supplementation combined with exercise training. Nutrients, 10(8), 1103.
Bergman, C., Gray-Scott, D., Chen, J. J., & Meacham, S. (2009). What is next for the die-tary reference intakes for bone metabolism-related nutrients beyond calcium: phosphorus, magnesium, vitamin D, and fluoride? Critical reviews in food science and nutrition, 49(2), 136-144.
Lee, A. M., Shandala, T., Soo, P. P., Su, Y. W., King, T. J., Chen, K. M., ... & Xian, C. J. (2017). Effects of resveratrol supplementation on methotrexate chemotherapy-induced bone loss. Nutrients, 9(3), 255.
Domenici, R., & Vierucci, F. (2022). Exclusive breastfeeding and vitamin D supplementa-tion: a positive synergistic effect on prevention of childhood infections? International Journal of Environmental Research and Public Health, 19(5), 2973.
Gennari, C. (2001). Calcium and vitamin D nutrition and bone disease of the elder-ly. Public health nutrition, 4(2b), pp. 547-559.
Hemayattalab, R. (2010). Effects of physical training and calcium intake on students with mental retardation bone mineral density. Research in developmental disabilities, 31(3), 784-789.
Mager, D. R., Qiao, J., & Turner, J. (2012). Vitamin D and K status influence bone min-eral density and bone accrual in children and adolescents with celiac disease. European Journal of clinical nutrition, 66(4), 488-495.
Lister, C. E., Skinner, M. A., & Hunter, D. C. (2007). FRUITS, VEGETABLES, AND THEIR PHYTOCHEMICALS FOR BONE AND JOINT HEALTH. Current topics in nutraceutical research, 5.
Burrow, K., Young, W., McConnell, M., Carne, A., & Bekhit, A. E. D. (2018). Do dairy minerals have a positive effect on bone health? Comprehensive reviews in food science and food safety, 17(4), 989-1005.
Yang, X., Zhai, Y., Zhang, J., Chen, J. Y., Liu, D., & Zhao, W. H. (2020). Combined ef-fects of physical activity and calcium on bone health in children and adolescents: a sys-tematic review of randomized controlled trials. World Journal of Pediatrics, pp. 16, 356-365.
Julián-Almárcegui, C., Gómez-Cabello, A., Huybrechts, I., González-Agüero, A., Kauf-man, J. M., Casajus, J. A., & Vicente-RodrÃguez, G. (2015). Combined effects of interac-tion between physical activity and nutrition on bone health in children and adolescents: a systematic review. Nutrition Reviews, 73(3), 127-139.
Hind, K., & Burrows, M. (2007). Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone, 40(1), 14-27.
Golden, N. H., Abrams, S. A., & Committee on Nutrition (2014). Optimizing bone health in children and adolescents. Pediatrics, 134(4), e1229-e1243. https://doi.org/10.1542/peds.2014-2173
Plantz MA, Bittar K. Dietary Calcium. [Updated 2021 Jan 13]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549792/
Stallings V. A. (1997). Calcium and bone health in children: a review. American Journal of Therapeutics, 4(7-8), 259-273. https://doi.org/10.1097/00045391-199707000-00007
Wood, R. J., & Zheng, J. J. (1997). High dietary calcium intakes reduce zinc absorption and balance in humans. The American Journal of clinical nutrition, 65(6), 1803-1809. https://doi.org/10.1093/ajcn/65.6.1803
Li, K., Wang, X. F., Li, D. Y., Chen, Y. C., Zhao, L. J., Liu, X. G., Guo, Y. F., Shen, J., Lin, X., Deng, J., Zhou, R., & Deng, H. W. (2018). The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clinical interven-tions in aging, pp. 13, 2443-2452. https://doi.org/10.2147/CIA.S157523
Winzenberg T, Powell S, Shaw K A, Jones G. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis BMJ 2011; 342:c7254 doi:10.1136/bmj.c7254
Prodam, F., Aimaretti, G. Could zinc supplementation improve bone status in growth hormone (GH) deficient children? Endocrine 43, 467-468 (2013). https://doi.org/10.1007/s12020-013-9888-z
Christodoulou, S., Goula, T., Ververidis, A., & Drosos, G. (2013). Vitamin D and bone disease. BioMed research international, 2013, 396541. https://doi.org/10.1155/2013/396541
Schwalfenberg, G. K., & Genuis, S. J. (2017). The Importance of Magnesium in Clinical Healthcare. Scientifica, 2017, 4179326. https://doi.org/10.1155/2017/4179326
Tanumihardjo, S. A. (2013). Vitamin A and Bone Health: The Balancing Act. Journal of Clinical Densitometry, 16(4), 414-419. doi:10.1016/j.jocd.2013.08.016
Lionikaite, V., Henning, P., Drevinge, C., Shah, F. A., Palmquist, A., Wikström, P., Win-dahl, S. H., & Lerner, U. H. (2019). Vitamin A decreases the anabolic bone response to mechanical loading by suppressing bone formation. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 33(4), 5237-5247. https://doi.org/10.1096/fj.201802040R
Tanumihardjo, S. A., Gannon, B. M., Kaliwile, C., Chileshe, J., & Binkley, N. C. (2019). Restricting vitamin A intake increases bone formation in Zambian children with high liver stores of vitamins. Archives of osteoporosis, 14(1), 72. https://doi.org/10.1007/s11657-019-0617-y
Ekbote, V., Khadilkar, A., Chiplonkar, S., Mughal, Z., & Khadilkar, V. (2012). Enhanced effect of zinc and calcium supplementation on bone status in growth hormone-deficient children treated with growth hormone: a pilot randomized controlled trial. Endocrine, 43(3), 686-695. doi:10.1007/s12020-012-9847-0
Price, C. T., Langford, J. R., & Liporace, F. A. (2012). Essential Nutrients for Bone Health and a Review of Their Availability in the Average North American Diet. The open Orthopaedics journal, 6, 143-149. https://doi.org/10.2174/1874325001206010143
Wu, Z., Yuan, Y., Tian, J., Long, F., & Luo, W. (2021). The associations between serum trace elements and bone mineral density in children under three years of age. Scientific reports, 11(1), 1890. https://doi.org/10.1038/s41598-021-81501-3
Plum, L. M., Rink, L., & Haase, H. (2010). The essential toxin: impact of zinc on human health. International journal of environmental research and public health, 7(4), 1342-1365. https://doi.org/10.3390/ijerph7041342
Karpiński, M., Popko, J., Maresz, K., Badmaev, V., & Stohs, S. J. (2017). Roles of Vita-mins D and K, Nutrition, and Lifestyle in Low-Energy Bone Fractures in Children and Young Adults. Journal of the American College of Nutrition, 36(5), 399-412. doi:10.1080/07315724.2017.1307791
Price, C. T., Langford, J. R., & Liporace, F. A. (2012). Essential Nutrients for Bone Health and a Review of Their Availability in the Average North American Diet. The open Orthopaedics journal, 6, 143-149. https://doi.org/10.2174/1874325001206010143
Semba, R. D., Shardell, M., Sakr Ashour, F. A., Moaddel, R., Trehan, I., Maleta, K. M., Ordiz, M. I., Kraemer, K., Khadeer, M. A., Ferrucci, L., & Manary, M. J. (2016). Child Stunting is Associated with Low Circulating Essential Amino Acids. EBioMedicine, 6, 246-252. https://doi.org/10.1016/j.ebiom.2016.02.030
Rizky Maulidiana, A., & Sutjiati, E. (2021). Low intake of essential amino acids and oth-er risk factors of stunting among under-five children in Malang City, East Java, Indone-sia. Journal of public health research, 10(2), 2161. https://doi.org/10.4081/jphr.2021.2161
Whittaker, P. (1998, Aug). Iron and zinc interactions in humans. Am J Clinical Nutrition, 68(2), 442S-446S. doi:10.1093/ajcn/68.2.442S
Cook, J., Dassenko, S., & Whittaker, P. (1991, Jan). Calcium supplementation: effect on iron absorption. Am J Clinical Nutrition, 53(1), 106-11.
Castiglioni, S., Cazzaniga, A., Albisetti, W., & Maier, J. A. (2013). Magnesium and oste-oporosis: current state of knowledge and future research directions. Nutrients, 5(8), 3022-3033. https://doi.org/10.3390/nu5083022
https://www.webmd.com/vitamins/ai/ingredientmono-998/magnesium
Zhang, X., Zhang, R., Moore, J. B., Wang, Y., Yan, H., Wu, Y., Tan, A., Fu, J., Shen, Z., Qin, G., Li, R., & Chen, G. (2017). The Effect of Vitamin A on Fracture Risk: A Meta-Analysis of Cohort Studies. International journal of environmental research and public health, 14(9), 1043. https://doi.org/10.3390/ijerph14091043
Vakili, R., Yazdan Bakhsh, M., Vahedian, M., Mahmoudi, M., Saeidi, M., Vakili, S. (2015). The Effect of Zinc Supplementation on Linear Growth and Growth Factors in Primary Schoolchildren in the Suburbs Mashhad, Iran. International Journal of Pediatrics, 3(2.1), 1-7. doi: 10.22038/ijp.2015.3931
Érika Dantas de Medeiros Rocha MSc, Naira Josele Neves de Brito PhD, Márcia MarÃlia Gomes Dantas MSc,Alfredo de Araújo Silva MSc, Maria das Graças Almeida PhD & Jo-s Brandão-Neto PhD (2015): Effect of Zinc Supplementationon GH, IGF1, IGFBP3, OCN, and ALP in Non-Zinc-Deficient Children, Journal of the American College of Nu-trition, DOI:10.1080/07315724.2014.92951
Adriani, M., & Wirjatmadi, B. (2014). The effect of adding zinc to vitamin A on IGF-1, bone age, and linear growth in stunted children. Journal of trace elements in medicine and biology: Organ of the Society for Minerals and Trace Elements (GMS), 28(4), 431-435. https://doi.org/10.1016/j.jtemb.2014.08.007
Castiglioni, S., Cazzaniga, A., Albisetti, W., & Maier, J. A. (2013). Magnesium and oste-oporosis: current state of knowledge and future research directions. Nutrients, 5(8), 3022-3033. https://doi.org/10.3390/nu5083022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Bilal Jinnah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.