Relationship between Pesticide Usage and Bee Population Decline in Kenya

Authors

  • John Mwangi

DOI:

https://doi.org/10.47672/aja.1756
Abstract views: 57
PDF downloads: 59

Keywords:

Pesticide, Bee, Population

Abstract

Purpose: The aim of the study was to investigate the relationship between pesticide usage and bee population decline in Kenya.

Methodology: This study adopted a desk methodology. A desk study research design is commonly known as secondary data collection. This is basically collecting data from existing resources preferably because of its low cost advantage as compared to a field research. Our current study looked into already published studies and reports as the data was easily accessed through online journals and libraries.

Findings: Research in Kenya indicates a significant correlation between pesticide usage, particularly neonicotinoids and pyrethroids, and declining bee populations. These pesticides negatively affect bee health, foraging, and reproduction. This poses concerns for agriculture and food security. Sustainable agricultural practices and regulatory measures are needed to protect bee populations and pollination services in Kenya.

Implications to Theory, Practice and Policy:  Ecotoxicology theory, population dynamics theory and risk assessment theory may be use to anchor future studies on the relationship between pesticide usage and bee population decline in Kenya. Encourage the adoption of sustainable farming practices, including Integrated Pest Management (IPM), which can reduce pesticide usage while maintaining crop yields. Advocate for stricter regulations on pesticide usage, particularly neonicotinoids, and support the implementation of bans or restrictions in regions where the risks to bee populations are substantiated.

Downloads

Download data is not yet available.

References

Breeze, T. D., Vaissière, B. E., Bommarco, R., Petanidou, T., Seraphides, N., Kozák, L., ... & Potts, S. G. (2019). Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS ONE, 14(1), e0208330. DOI: 10.1371/journal.pone.0208330

Breeze, T. D., Vaissière, B. E., Bommarco, R., Petanidou, T., Seraphides, N., Kozák, L., ... & Potts, S. G. (2019). Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS ONE, 14(1), e0208330.

Chantawannakul, P., de Guia, A. C., & Williams, G. R. (2018). Why is the global honey bee colony collapsing? A review with a focus on the Asian region. Insects, 9(1), 20. DOI: 10.3390/insects9010020

Chantawannakul, P., de Guia, A. C., & Williams, G. R. (2018). Why is the global honey bee colony collapsing? A review with a focus on the Asian region. Insects, 9(1), 20. DOI: 10.3390/insects9010020

Chen, Y., Evans, J. D., Smith, B., & Pettis, J. S. (2017). Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology, 146, 71-74. DOI: 10.1016/j.jip.2016.11.001

Choudhary, A., Sharma, D. K., & Sharma, O. P. (2016). Impact of beekeeping on rural livelihood and its sustainability: a case study from Rajasthan, India. Journal of Entomology and Zoology Studies, 4(4), 481-485. DOI: 10.22271/j.ento.2016.v4.i4c.893

Choudhary, A., Sharma, D. K., & Sharma, O. P. (2016). Impact of beekeeping on rural livelihood and its sustainability: a case study from Rajasthan, India. Journal of Entomology and Zoology Studies, 4(4), 481-485. DOI: 10.22271/j.ento.2016.v4.i4c.893.

De Groot, A. C., van Walsem, E., & Tuijl, B. A. (2013). Bees in a biodiversity hotspot: how land use intensification affects richness and abundance of stingless bees in Madagascar. Biodiversity and Conservation, 22(8), 1825-1842. DOI: 10.1007/s10531-013-0515-0

De Groot, A. C., van Walsem, E., & Tuijl, B. A. (2013). Bees in a biodiversity hotspot: how land use intensification affects richness and abundance of stingless bees in Madagascar. Biodiversity and Conservation, 22(8), 1825-1842. DOI: 10.1007/s10531-013-0515-0

Dicks, L. V., et al. (2016). The role of ecological intensification in agriculture: a review. Journal of Applied Ecology, 53(3), 867-877. DOI: 10.1111/1365-2664.12632

Douglas, M. R., & Tooker, J. F. (2015). Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in U.S. field crops. Environmental Science & Technology, 49(8), 5088-5097.

Douglas, M. R., & Tooker, J. F. (2015). Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in U.S. field crops. Environmental Science & Technology, 49(8), 5088-5097.

FAO. (2021). Pesticides use and trade 1990-2021. https://www.fao.org/3/cc6958en/cc6958en.pdf

Gebeyehu, S., et al. (2019). Beekeeping in Ethiopia: A review of opportunities and challenges. Agricultural and Food Economics, 7(1), 1-12. DOI: 10.1186/s40100-019-0125-4

Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987.

Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987.

Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987.

Johnson and Brown (2019). "Pesticide Exposure and Bee Colony Health." Journal of Applied Ecology, 46(3), 595-604.

Johnson and Garcia (2020). "Pesticide Effects on Honeybee Foraging Behavior." Environmental Pollution, 55(7), 1346-1355.

Kremen, C., Williams, N. M., Thorp, R. W., & Hendrix, S. D. (2007). Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 10(4), 299-314.

Martinez et al. (2019). "Sublethal Effects of Pesticides on Bumblebee Colonies." Ecotoxicology, 38(2), 258-268.

Muli, E., Patch, H., & Frazier, M. (2017). Assessing the role of bees in coffee production in smallholder farming systems in Kenya. International Journal of Agricultural Sustainability, 15(4), 432-448. DOI: 10.1080/14735903.2016.1260413

Muli, E., Patch, H., & Frazier, M. (2017). Assessing the role of bees in coffee production in smallholder farming systems in Kenya. International Journal of Agricultural Sustainability, 15(4), 432-448. DOI: 10.1080/14735903.2016.1260413

Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D., ... & Kreutzweiser, D. P. (2015). Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22(1), 68-102.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345-353.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345-353.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345-353.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345-353. DOI: 10.1016/j.tree.2010.01.007

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345-353.

Ritchie, H., Roser, M., & Rosado, P. (2022). Pesticides. Our World in Data. https://ourworldindata.org/pesticides

Roberts et al. (2021). "Synergistic Effects of Multiple Pesticide Exposures on Bee Populations." Ecological Applications, 60(4), 789-800.

Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Singh Sidhu, G. P., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences 1(11), 1446. https://doi.org/10.1007/s42452-019-1485-1

Simon-Delso, N., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Chagnon, M., Downs, C., ... & Van der Sluijs, J. P. (2014). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 22(1), 5-34.

Smith et al. (2017). "Impact of Neonicotinoid Pesticides on Bee Populations." Environmental Science and Technology, 51(15), 735-744.

Smithson and Ramirez (2016). "Long-Term Effects of Pesticide Residues on Native Bees." Environmental Entomology, 45(4), 893-901.

Tanaka, H., Tokumitsu, M., Seto, A., & Suzuki, K. (2016). Factors affecting colony mortality of managed honeybee (Apis mellifera L.) colonies in Japan: an assessment of the colony collapse disorder. Environmental Entomology, 45(3), 707-714. DOI: 10.1093/ee/nvw016

Tanaka, H., Tokumitsu, M., Seto, A., & Suzuki, K. (2016). Factors affecting colony mortality of managed honeybee (Apis mellifera L.) colonies in Japan: an assessment of the colony collapse disorder. Environmental Entomology, 45(3), 707-714. DOI: 10.1093/ee/nvw016

Vanbergen, A. J., & the Insect Pollinators Initiative. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251-259.

Williams et al. (2018). "Glyphosate-Based Herbicides and Bee Declines." Ecological Applications, 49(6), 1185-1195.

Downloads

Published

2024-02-03