Network Slicing for Customized QoS and QoE
DOI:
https://doi.org/10.47672/ejt.2845Keywords:
Network slicing; Quality of Service (QoS); Quality of Experience (QoE); 5G Networks; 6G Networks; Software-Defined Networking (SDN); Network Function Virtualization (NFV); AI-driven Orchestration; Resource Allocation; Slice ManagementAbstract
Purpose: The exponential growth of heterogeneous applications in next-generation mobile networks, ranging from ultra-reliable low-latency communications (URLLC) and enhanced mobile broadband (eMBB) to massive machine-type communications (mMTC) has created an urgent need for network infrastructures capable of offering differentiated and customized service guarantees. Network slicing has emerged as a pivotal 5G and beyond-5G (B5G) technology that enables the creation of multiple logical networks over a shared physical infrastructure, each tailored to the unique Quality of Service (QoS) and Quality of Experience (QoE) requirements of distinct use cases. This paper explores the architectural principles, enabling technologies, and intelligent management frameworks underpinning network slicing for customized QoS and QoE delivery.
Materials and Methods: We propose a comprehensive model that integrates Software-Defined Networking (SDN), Network Function Virtualization (NFV), and AI-driven orchestration to dynamically allocate network resources and optimize user experience across slices. Furthermore, we analyze the relationship between QoS parameters and perceived QoE to design adaptive slice configurations that respond to varying traffic and user conditions.
Findings: Simulation-based evaluations demonstrate that intelligent slice orchestration can significantly enhance resource utilization efficiency, reduce latency, and improve user satisfaction compared to static provisioning approaches.
Unique Contribution to Theory, Practice, and Policy: The findings highlight the transformative role of AI-enabled network slicing in achieving service differentiation, scalability, and automation in 5G and future 6G environments.
Downloads
References
Abidi, M. H., Naik, R. R., Patel, N. R., Gupta, S., & Patel, V. (2021). Optimal 5G network slicing using machine learning and virtualization. Journal of Network and Computer Applications, 188, 103067. https://doi.org/10.1016/j.jnca.2021.103067
Ajay, S., Satya Sai Krishna Mohan G, Rao, S. S., Shaunak, S. B., Krutthika, H. K., Ananda, Y. R., & Jose, J. (2018). Source Hotspot Management in a Mesh Network on Chip. In VDAT (pp. 619-630).
Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2021). A Review of AI and Machine Learning Solutions for Fault Detection and Self-Healing in Cloud Services. International Journal of AI, BigData, Computational and Management Studies, 2(3), 53-63.
Bega, D., Gramaglia, M., Banchs, A., Sciancalepore, V., Samdanis, K., & Costa-Perez, X. (2017). Optimising 5G infrastructure markets: The business of network slicing. In IEEE INFOCOM 2017 (pp. 1–9). IEEE.
Ben Attia, M., Nguyen, K.-K., & Cheriet, M. (2019). Slicing-aware QoS/QoE in software-defined smart home network. In 2019 International Conference on Smart & Sustainable Technologies (SpliTech) (pp. 1–6). IEEE.
Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2021). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Computer Technology and Electronics Communication, 4(1), 3219-3229.
Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, V., Enokkaren, S. J., & Attipalli, A. (2021). Systematic Review of Artificial Intelligence Techniques for Enhancing Financial Reporting and Regulatory Compliance. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 73-80.
Campolo, C., Molinaro, A., & Iera, A. (2018). 5G network slicing for vehicle-to-everything services. IEEE Wireless Communications, 24(6), 38–45.
Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. Available at SSRN 5609630.
Chen, X., Li, Z., Zhang, Y., Long, R., Yu, H., Du, X., & Guizani, M. (2018). Reinforcement learning-based QoS/QoE-aware service function chaining in software-driven 5G slices. arXiv preprint arXiv:1804.02099.
Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., & Attipalli, A. (2021). Enhancing Cloud Infrastructure Security Through AI-Powered Big Data Anomaly Detection. International Journal of Emerging Research in Engineering and Technology, 2(2), 43-54.
Ernst, J. B. (2014). A survey of QoS/QoE mechanisms in heterogeneous networks. Procedia Computer Science, 32, 842–849.
ETSI. (2017). GR NFV-EVE 012: Network Functions Virtualisation (NFV); Evolution and ecosystem; Report on network slicing support. European Telecommunications Standards Institute.
Gopalakrishnan Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv e-prints, arXiv-1001.
Gramaglia, M., Serrano, P., & Costa-Perez, X. (2018). Design and validation of a multi-service 5G network with network slicing. In Proceedings of the ACM Conference on Networked Systems (pp. 1–10).
Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.
Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.
Gupta, K., Varun, G. A. D., Polu, S. D. E., & Sachs, G. Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques.
HK, K. (2020). Design of Efficient FSM Based 3D Network on Chip Architecture. INTERNATIONAL JOURNAL OF ENGINEERING, 68(10), 67-73.
Hu, J., & Wu, J. (2022). 5G network slicing: Methods to support blockchain and reinforcement learning. Sensors, 22(17), 6623. https://doi.org/10.3390/s22176623
ITU-T. (2020a). Recommendation Y.3173: Framework for evaluating intelligence levels of future networks including IMT-2020. International Telecommunication Union.
ITU-T. (2020b). Recommendation Y.3176: Machine learning marketplace integration in future networks including IMT-2020. International Telecommunication Union.
Jia, Q., Xie, R., Huang, T., Liu, J., & Liu, Y. (2017). Efficient caching resource allocation for network slicing in 5G core networks. IET Communications, 11(18), 2792–2799.
Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 35-42.
Khan, S., Khan, S., Ali, Y., Khalid, M., Ullah, Z., & Mumtaz, S. (2021). Highly accurate and reliable wireless network slicing in 5th generation networks: A hybrid deep learning approach. arXiv preprint arXiv:2111.09416.
Kothamaram, R. R., Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., & Maniar, V. (2021). A Survey of Adoption Challenges and Barriers in Implementing Digital Payroll Management Systems in Across Organizations. International Journal of Emerging Research in Engineering and Technology, 2(2), 64-72.
Kourtis, M. A., Sarlas, T., & Xilouris, G. (2021). Conceptual evaluation of a 5G network slicing technique for emergency communications and preliminary estimate of energy trade-off. Energies, 14(1), 1–14.
Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712
Krutthika, H. K. (2019, October). Modeling of Data Delivery Modes of Next Generation SOC-NOC Router. In 2019 Global Conference for Advancement in Technology (GCAT) (pp. 1-6). IEEE.
Li, X., Zhang, H., Wang, Y., & Guizani, M. (2022). Deep reinforcement learning for dynamic network slicing resource management in 5G beyond. IEEE Transactions on Network Science and Engineering, 9(4), 2819–2832.
Liu, Y., Peng, M., Shou, G., Chen, Y., & Chen, S. (2022). Toward edge intelligence: Multi-agent reinforcement learning for QoE-driven network slicing. IEEE Communications Surveys & Tutorials, 24(1), 280–308.
Liubogoshchev, M., Frolova, A., & Chernov, D. (2023). DeSlice: An architecture for QoE-aware and isolated RAN slicing. Sensors, 23(5), 2456. https://doi.org/10.3390/s23052456
Lopez, D., Ameigeiras, P., Ramos-Munoz, J. J., Lorca, J., & Folgueira, J. (2017). Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Communications Magazine, 55(5), 80–87.
Luo, M., Wu, J., & Li, X. (2020). Cross-domain certificateless authenticated group key agreement protocol for 5G network slicing. Telecommunication Systems, 74(2), 233–245.
Maniar, V., Tamilmani, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., & Singh, A. A. S. (2021). Review of Streaming ETL Pipelines for Data Warehousing: Tools, Techniques, and Best Practices. International Journal of AI, BigData, Computational and Management Studies, 2(3), 74-81.
Mohammedali, N. A., Al-Sherbaz, A., & Ali, M. (2023). Enhancing service classification for network slicing in 5G: QoS, QoE and machine learning. University of Gloucestershire Technical Report.
Montero, R., Pagès, A., Agraz, F., & Spadaro, S. (2017). Supporting QoE/QoS-aware end-to-end network slicing in future 5G-enabled optical networks. Optical Communications Group, UPC.
Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv preprint arXiv:1001.3781.
Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J. J., Lorca, J., & Folgueira, J. (2017). Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Communications Magazine, 55(5), 80–87.
Patel, M., Rathore, N., Naik, R. R., Gupta, S., & Patel, V. (2025). Review on network slicing optimization: A machine learning perspective. Atlantis Highlights in Engineering, 19, 221–230.
Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.
Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.
Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.
Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.
Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. (2022). Blockchain Technology as a Tool for Cybersecurity: Strengths, Weaknesses, and Potential Applications. Unpublished manuscript.
Popovski, P., Trillingsgaard, K. F., Simeone, O., & Durisi, G. (2017). 5G wireless network slicing for enhanced QoS provisioning. IEEE Communications Magazine, 55(11), 72–79.
Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., Maniar, V., & Kothamaram, R. R. (2021). Anomaly Identification in IoT-Networks Using Artificial Intelligence-Based Data-Driven Techniques in Cloud Environmen. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 83-91.
Richart, M., Baliosian, J., Serrat, J., & Gorricho, J.-L. (2016). Resource slicing in virtual wireless networks: A survey. IEEE Transactions on Network and Service Management, 13(3), 462–476.
Shi, Y., Erpek, T., & Sagduyu, Y. E. (2020). Reinforcement learning for dynamic resource optimization in 5G radio access network slicing. arXiv preprint arXiv:2009.06579.
Singh, A. A. S., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Predictive Modeling for Classification of SMS Spam Using NLP and ML Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 60-69.
Singh, A. A., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Hybrid AI Models Combining Machine-Deep Learning for Botnet Identification. International Journal of Humanities and Information Technology, (Special 1), 30-45.
Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.
Yousaf, M., Gramaglia, M., & Costa-Perez, X. (2018). Network slicing with flexible mobility and QoS/QoE support. IEEE Access, 6, 2282–2295.
Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.-H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Prasanth Kosaraju, Venu Madhav Nadella

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.