Quantum-Safe Cryptography: Securing the Post-Quantum Era through AI-Driven Innovations

Authors

  • Ravi Teja Avireneni Industrial Management, University of Central Missouri
  • Sri Harsha Koneru Computer Information Systems and Information Technology, University of Central Missouri
  • Naresh Kiran Kumar Reddy Yelkoti Information Systems Technology and Information Assurance, Wilmington University
  • Sivaprasad Yerneni Khaga Environmental Engineering, University of New Haven

DOI:

https://doi.org/10.47672/ejt.2817

Abstract

Purpose: The purpose of this paper is to examine the emerging threat that large-scale quantum computing poses to classical public-key cryptographic systems, particularly RSA and Elliptic Curve Cryptography (ECC), which form the backbone of contemporary digital security infrastructures. In response to this threat, the study aims to analyze post-quantum cryptography (PQC) as a viable long-term solution capable of resisting both classical and quantum adversaries. The paper further seeks to assess the urgency of PQC adoption in light of the “harvest now, decrypt later” threat model and to evaluate the practical readiness of quantum-safe cryptographic algorithms currently under consideration by the National Institute of Standards and Technology (NIST).

Materials and Methods: This study employs a qualitative and analytical research methodology grounded in an extensive review of authoritative sources, including NIST’s post-quantum cryptography standardization documents, recent academic literature, industry white papers, and policy reports from organizations such as RAND Corporation and Cloudflare. The analysis systematically surveys major families of post-quantum cryptographic algorithms namely lattice-based, code-based, and hash-based schemes and evaluates them based on security assumptions, computational efficiency, implementation complexity, and standardization maturity.

Findings: The analysis indicates that Lattice-based cryptographic schemes demonstrate the highest maturity and practical readiness, evidenced by their selection in NIST’s PQC process. Code- and hash-based methods provide strong security but face key size and performance challenges. The lack of scalable quantum computers does not reduce urgency, as data harvesting persists. Artificial intelligence emerges as a key enabler for accelerating PQC adoption.

Unique Contribution to Theory, Practice and Policy: The paper recommends a proactive, phased post-quantum migration using hybrid cryptographic architectures. Organizations should conduct inventories, benchmarking, and pilot deployments aligned with NIST standards. AI-driven tools are advised to improve key management and reduce complexity. Continued interdisciplinary research and policy support are encouraged to ensure a secure, scalable transition to quantum-resistant security systems.

Downloads

Download data is not yet available.

References

1. Babaei, R., & Liu, Y. (2024). AI-based adaptive frameworks for post-quantum network security. IEEE Transactions on Information Forensics and Security, 20(1), 102–117.

2. Gong, Q., Li, X., & Zhang, Y. (2024). A survey on lattice-based digital signature schemes: Trends and challenges. Cybersecurity, 7(1), 18. https://cybersecurity.springeropen.com/articles/10.1186/s42400-023-00198-1

3. Kaur, R., & Singh, D. (2024). AI-assisted approaches for post-quantum key management. Journal of Information Security and Applications, 80(4), 103712.

4. Li, Z., & Chen, X. (2024). Quantum machine learning for cryptographic strength analysis. npj Quantum Information, 11(22), 1–10.

5. Mosca, M. (2024). Cybersecurity in the quantum era: Assessing the timeline for quantum risk. Nature Reviews Physics, 6(3), 145–156.

6. National Institute of Standards and Technology (NIST). (2024, August). NIST releases first post-quantum cryptography standards. https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards

7. Organisation for Economic Co-operation and Development (OECD). (2024). AI in cybersecurity: Ethical and governance guidelines. OECD Publishing.

8. RAND Corporation. (2024, April). Preparing for post-quantum cryptography: Policy and infrastructure implications. https://www.rand.org/pubs/commentary/2024/04/preparing-for-post-quantum-cryptography.html

9. Zhang, H., Wang, L., & Chen, J. (2023). Machine learning-based approaches to quantum-safe protocol optimization. IEEE Access, 11, 121943–121956.

10. Cloudflare. (2024, July 23). NIST’s first post-quantum standards: What you need to know. Cloudflare Blog. https://blog.cloudflare.com/nists-first-post-quantum-standards/

11. Gong, Q., Li, X., & Zhang, Y. (2024). A survey on lattice-based digital signature schemes: Trends and challenges. Cybersecurity, 7(1), 18.

12. Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484–1509.

13. Bernstein, D. J., Lange, T., & Peters, C. (2023). Classic McEliece: Quantum-safe public-key encryption based on error-correcting codes. Designs, Codes and Cryptography, 91(4), 851–874.

14. Chen, L., Jordan, S., & Liu, Y.-K. (2024). Post-quantum cryptography: Current status and future directions. Communications of the ACM, 67(2), 42–54.

15. Diffie, W., & Hellman, M. E. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22(6), 644–654.

16. Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48(177), 203–209.

17. Stallings, W. (2023). Cryptography and network security: Principles and practice (9th ed.). Pearson.

18. OQS Project. (2024). Open Quantum Safe: Open-source implementation of post-quantum algorithms. https://openquantumsafe.org

19. OECD. (2024). AI in cybersecurity: Ethical and governance guidelines. Organisation for Economic Co-operation and Development.

20. Wilkinson, M. D., et al. (2023). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 10(112).

21. Yin, R. K. (2023). Case study research and applications: Design and methods (7th ed.). Sage Publications.

22. Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2021). Enhancing IoT (Internet of Things) Security through Intelligent Intrusion Detection Using ML Models. Available at SSRN 5609630.

23. Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.

24. Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.

25. Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.

26. Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

27. Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.

28. Gupta, K., Varun, G. A. D., Polu, S. D. E., & Sachs, G. Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques.

29. Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. (2022). Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies, 1(2), 10-56472.

30. Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

31. Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).

32. Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. Available at SSRN 5538121.

33. Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153-164.

34. Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.

35. Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., & Nandiraju, S. K. K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. Available at SSRN 5515262.

36. Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS. WEAKNESSES, AND POTENTIAL APPLICATIONS.

37. Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340

38. Gopalakrishnan Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv e-prints, arXiv-1001.

39. Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712

40. Singh, A. A., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Hybrid AI Models Combining Machine-Deep Learning for Botnet Identification. International Journal of Humanities and Information Technology, (Special 1), 30-45.

41. Kothamaram, R. R., Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., & Maniar, V. (2021). A Survey of Adoption Challenges and Barriers in Implementing Digital Payroll Management Systems in Across Organizations. International Journal of Emerging Research in Engineering and Technology, 2(2), 64-72.

42. Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., Maniar, V., & Kothamaram, R. R. (2021). Anomaly Identification in IoT-Networks Using Artificial Intelligence-Based Data-Driven Techniques in Cloud Environmen. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 83-91.

43. Maniar, V., Tamilmani, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., & Singh, A. A. S. (2021). Review of Streaming ETL Pipelines for Data Warehousing: Tools, Techniques, and Best Practices. International Journal of AI, BigData, Computational and Management Studies, 2(3), 74-81.

44. Singh, A. A. S., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Predictive Modeling for Classification of SMS Spam Using NLP and ML Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 60-69.

45. Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2021). A Review of AI and Machine Learning Solutions for Fault Detection and Self-Healing in Cloud Services. International Journal of AI, BigData, Computational and Management Studies, 2(3), 53-63.

46. Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., & Attipalli, A. (2021). Enhancing Cloud Infrastructure Security Through AI-Powered Big Data Anomaly Detection. International Journal of Emerging Research in Engineering and Technology, 2(2), 43-54.

47. Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2021). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Computer Technology and Electronics Communication, 4(1), 3219-3229.

48. Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 35-42.

49. Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, V., Enokkaren, S. J., & Attipalli, A. (2021). Systematic Review of Artificial Intelligence Techniques for Enhancing Financial Reporting and Regulatory Compliance. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 73-80.

50. Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Universal Library of Engineering Technology, (Issue).

51. Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., & Kendyala, R. (2022). A Review of Security, Compliance, and Governance Challenges in Cloud-Native Middleware and Enterprise Systems. International Journal of Research and Applied Innovations, 5(1), 6434-6443.

52. Mamidala, J. V., Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., & Kurma, J. (2022). Towards the Efficient Management of Cloud Resource Allocation: A Framework Based on Machine Learning.

53. Namburi, V. D., Rajendran, D., Singh, A. A., Maniar, V., Tamilmani, V., & Kothamaram, R. R. (2022). Machine Learning Algorithms for Enhancing Predictive Analytics in ERP-Enabled Online Retail Platform. International Journal of Advance Industrial Engineering, 10(04), 65-73.

54. Rajendran, D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Namburi, V. D. (2022). Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects for Quality Assurance. Universal Library of Engineering Technology, (Issue).

55. Namburi, V. D., Tamilmani, V., Singh, A. A. S., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2022). Review of Machine Learning Models for Healthcare Business Intelligence and Decision Support. International Journal of AI, BigData, Computational and Management Studies, 3(3), 82-90.

Published

2024-04-17

How to Cite

Avireneni, R. T., Koneru, S. H., Yelkoti, N. K. K. R., & Khaga, S. Y. (2024). Quantum-Safe Cryptography: Securing the Post-Quantum Era through AI-Driven Innovations. European Journal of Technology, 8(6), 49–69. https://doi.org/10.47672/ejt.2817

Issue

Section

Articles