Pathogenesis of Dengue virus in Host immune system and its genomic variation

Authors

  • Shehreen Sohail
  • Mukarram Farooq
  • Fareeha Sohail
  • Hamza Rana
  • Husnain Karim
  • Tousif Haider
  • Ahmed Shakir
  • Mahrukh Zafar
  • Samrah Saadat

DOI:

https://doi.org/10.47672/ejb.840
Abstract views: 227
PDF downloads: 201

Keywords:

Dengue virus, Vector, Host immune system, antibody dependent enchantment, genomic variation.

Abstract

Dengue viruses are the most prevalent arthropod-borne viral diseases in humans, infecting 50-100 million people each year. Its serotypes are the most common causes of arboviral illness, putting half of the world's population at risk of infection. Because there is no vaccine or antiviral medicines, the only way to manage the disease is to reduce the Aedes mosquito vectors. DENV infection can be asymptomatic or cause a self-limiting, acute febrile illness with varying degrees of severity. High fever, headache, stomach discomfort, rash, myalgia, and arthralgia are the typical symptoms of dengue fever (DF). Thrombocytopenia, vascular leakage, and hypotension are symptoms of severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). Systemic shock characterizes DSS, which can be deadly. Dengue virus infection pathogenesis is linked to a complex interaction between virus, host genes, and host immune response. Major drivers of disease vulnerability include host factors such as antibody-dependent enhancement (ADE), memory cross-reactive T cells, anti-DENV NS1 antibodies, autoimmunity, and genetic variables. The NS1 protein and anti-DENV NS1 antibodies were thought to be involved in the development of severe dengue. The progressive infection may change the cytokine response of cross reactive CD4+ T cells. The need for dengue vaccines that can generate strong protective immunity against all four serotypes is required. To create such vaccines, a thorough understanding of DENV adaptive immunity is required. Structural and functional research have shown that the degree of prM protein cleavage as well as the ensemble of conformational states sampled by virions influence DENV sensitivity to antibody-mediated neutralization, which has crucial implications for vaccine formulation.

Downloads

Download data is not yet available.

Author Biographies

Shehreen Sohail

University of Central Punjab, MS Microbiology

Mukarram Farooq

Allama Iqbal Medical College, MBBS

Fareeha Sohail

Government College University, BS Microbiology

Hamza Rana

Allama Iqbal Medical College, MBBS

Husnain Karim

University of Central Punjab, MS Microbiology

Tousif Haider

University of Central Punjab, MS Microbiology

Ahmed Shakir

University of Lahore, MS Forensic

Mahrukh Zafar

University of Central Punjab, BS Biotechnology

Samrah Saadat

Allama Iqbal Medical College, MBBS

References

Westaway EG, Brinton MA, Gaidamovich S, Horzinek MC, Igarashi A, Kaariainen L, et al. Flaviviridae. Intervirology 1985; 24: 18392

Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 2002; 10: 1003.

WHO Dengue: guidelines for diagnosis, treatment, prevention and control new ed. Geneva: World Health Organization; 2009.

Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev 1990; 3: 37696

Tsai CJ, Kuo CH, Chen PC, Changcheng CS. Upper gastro-intestinal bleeding in dengue fever. Am J Gastroenterol 1991; 86: 33-5.

Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 2002; 10: 100-3.

Mutheneni SR, Morse AP, Caminade C, Upadhyayula SM (2017) Dengue burden in India: recent trends and importance of climatic parameters. Emerg Microbes Infect 6(8): e70

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al (2013) The global distribution and burden of dengue. Nature. 496(7446):504–507.

Hussain T, Jamal M, Rehman T, Andleeb S (2015) Dengue: pathogenesis, prevention and treatment – a mini review. Adv Life Sci 2(3):110–114.

Hermann LL, Gupta SB, Manof SB, Kalayanarooj S, Gibbons RV, Coller B-AG (2015) Advances in the understanding, management, and prevention of dengue. J Clin Virol 64:153–159.

Holmes EC (1998) Molecular epidemiology and evolution of emerging infectious diseases. Br Med Bull 54(3):533–543.

Mustafa MS, Rasotgi V, Jain S, Gupta V (2015) Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India 71(1):67–70.

Chaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS (2000) Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Microbiol 28(3):183–188.

Pang X, Zhang R, Cheng G (2017) Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virol Sin 32(1):16–22.

World Health Organization (1997) Dengue hemorrhagic fever diagnosis, treatment, p.pdf [Internet]. [cited 2018 July 3].

Mathew A, Rothman AL (2008) Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev 225:300–313

Guzman MG, Alvarez M, Halstead SB (2013) Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 158(7):1445–1459.

Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; et al. Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell 2002, 108, 717–725. [CrossRef]

Zhang, X.; Ge, P.; Yu, X.; Brannan, J.M.; Bi, G.; Zhang, Q.; Schein, S.; Zhou, Z.H. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol. 2013, 20, 105–110. [CrossRef]

Kostyuchenko, V.A.; Zhang, Q.; Tan, J.L.; Ng, T.-S.; Lok, S.-M. Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J. Virol. 2013, 87, 7700–7707. [CrossRef]

Kostyuchenko, V.A.; Chew, P.L.; Ng, T.-S.; Lok, S.-M. Near-atomic resolution cryo-electron microscopic structure of dengue serotype 4 virus. J. Virol. 2014, 88, 477–482. [CrossRef]

Zhang, W.; Chipman, P.R.; Corver, J.; Johnson, P.R.; Zhang, Y.; Mukhopadhyay, S.; Baker, T.S.; Strauss, J.H.; Rossmann, M.G.; Kuhn, R.J.; et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 2003, 10, 907–912.

Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA. 2003, 100, 6986–6991. [CrossRef] [PubMed]

Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol. 2005, 79, 1223–1231. [CrossRef] [PubMed]

Zhang, Y.; Zhang, W.; Ogata, S.; Clements, D.; Strauss, J.H.; Baker, T.S.; Kuhn, R.J.; Rossmann, M.G. Conformational changes of the flavivirus E glycoprotein. Structure 2004, 12, 1607–1618.

Chen, Y.; Maguire, T.; Hileman, R.E.; Fromm, J.R.; Esko, J.D.; Linhardt, R.J.; Marks, R.M. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 1997, 3, 866–871.

Watterson, D.; Kobe, B.; Young, P.R. Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. J. Gen. Virol. 2012, 93, 72–82. [CrossRef] 49. Pokidysheva, E.; Zhang, Y.; Battisti, A.J.; Bator-Kelly, C.M.; Chipman, P.R.; Xiao, C.; Gregorio, G.G.; Hendrickson, W.A.; Kuhn, R.J.; Rossmann, M.G. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 2006, 124, 485–493.

Pokidysheva, E.; Zhang, Y.; Battisti, A.J.; Bator-Kelly, C.M.; Chipman, P.R.; Xiao, C.; Gregorio, G.G.; Hendrickson, W.A.; Kuhn, R.J.; Rossmann, M.G. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 2006, 124, 485–493. [CrossRef] [PubMed]

Miller, J.L.; de Wet, B.J.M.; deWet, B.J.M.; Martinez-Pomares, L.; Radcliffe, C.M.; Dwek, R.A.; Rudd, P.M.; Gordon, S. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008, 4, e17.

Bressanelli, S.; Stiasny, K.; Allison, S.L.; Stura, E.A.; Duquerroy, S.; Lescar, J.; Heinz, F.X.; Rey, F.A. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 2004, 23, 728–738. [CrossRef] [PubMed]

Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature 2004, 427, 313–319.

Nour, A.M.; Li, Y.; Wolenski, J.; Modis, Y. Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLoS Pathog. 2013, 9, e1003585.mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol. 2013, 20, 105–110.

Kostyuchenko, V.A.; Zhang, Q.; Tan, J.L.; Ng, T.-S.; Lok, S.-M. Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J. Virol. 2013, 87, 7700–7707.

Zhang, Y.; Corver, J.; Chipman, P.R.; Zhang, W.; Pletnev, S.V.; Sedlak, D.; Baker, T.S.; Strauss, J.H.; Kuhn, R.J.; Rossmann, M.G. Structures of immature flavivirus particles. EMBO J. 2003, 22, 2604–2613.

Stadler, K.; Allison, S.L.; Schalich, J.; Heinz, F.X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 1997, 71, 8475–8481. [CrossRef] [PubMed]

Yu, I.-M.; Zhang, W.; Holdaway, H.A.; Li, L.; Kostyuchenko, V.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 2008, 319, 1834–1837.

Zybert, I.A.; van der Ende-Metselaar, H.; Wilschut, J.; Smit, J.M. Functional importance of dengue virus maturation: Infectious properties of immature virions. J. Gen. Virol. 2008, 89, 3047–3051.

Randolph, V.B.; Winkler, G.; Stollar, V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 1990, 174, 450–458.

Plevka, P.; Battisti, A.J.; Junjhon, J.; Winkler, D.C.; Holdaway, H.A.; Keelapang, P.; Sittisombut, N.; Kuhn, R.J.; Steven, A.C.; Rossmann, M.G. Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep. 2011, 12, 602–606.

Pang X, Zhang M, Dayton AI. Development of dengue virus replicons expressing HIV-1 gp120 and other heterologous genes: a potential future tool for dual vaccination against dengue virus and HIV. BMC Microbiol 2001; 1: 28.

Alvarez DE, Lodeiro MF, Filomatori CV, Fucito S, Mondotte JA, Gamarnik AV, et al. Structural and functional analysis of dengue virus RNA. Novartis Found Symp 2006; 277: 120-32; discussion 132-5, 251-3.

Alvarez DE, Lodeiro MF, Filomatori CV, Fucito S, Mondotte JA, Gamarnik AV, et al. Structural and functional analysis of dengue virus RNA. Novartis Found Symp 2006; 277: 120-32; discussion 132-5, 251-3.

Gamarnik A. Role of the dengue virus 5’ and 3’ untranslated regions in viral replication. In: Hanley KA, Weaver SC, eds. Frontiers in dengue virus research. Norfolk, UK: Caister Academic Press; 2010, pp. 55-78.

Yu L, Nomaguchi M, Padmanabhan R, Markoff L. Specific requirements for elements of the 5’ and 3’ terminal regions in flavivirus RNA synthesis and viral replication. Virology 2008; 374: 170-85.

Rigau-Perez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam AV, et al. Dengue and dengue haemorrhagic fever. Lancet 1998; 352: 971-7.

Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 2002; 186: 1165-8.

Ubol S, Halstead SB (2010) How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol 17(12):1829–1835

Mammen MP, Lyons A, Innis BL, Sun W, McKinney D, Chung RCY et al (2014) Evaluation of dengue virus strains for human challenge studies. Vaccine. 32(13):1488–1494.

Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de Chacon et al (1999) Dengue virus structural diferences that correlate with pathogenesis. J Virol 73(6):4738–4747

Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C et al (1997) Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology. 230(2):244–251.

Pang X, Zhang R, Cheng G (2017) Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virol Sin 32(1):16–22.

Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E et al (2010) RNA structures required for production of subgenomic favivirus RNA. J Virol 84(21):11407–11417

Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC et al (2014) The structural basis of pathogenic subgenomic favivirus RNA (sfRNA) production. Science. 344(6181):307–310.

Roby JA, Pijlman GP, Wilusz J, Khromykh AA (2014) Noncoding subgenomic favivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 6(2):404–427.

Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ et al (2015) Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science. 350(6257):217–221.

Green AM, Beatty PR, Hadjilaou A, Harris E (2014) Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 426(6):1148–1160

Kao Y-T, Lai MMC, Yu C-Y (2018) How dengue virus circumvents innate immunity. Front Immunol [Internet]. [cited 2020 Sep 2];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC6288372/.

Aguiar, M., Stollenwerk, N. & Halstead, S. B. The risks behind Dengvaxia recommendation. Lancet Infect. Dis. 16, 882 (2016).

Aoki-Utsubo, C. et al. Broad-spectrum antiviral agents: secreted phospholipase A 2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane. Sci. Rep. 7, 1 (2017).

Hadinegoro, S.R.; Arredondo-García, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Ismail, H.I.H.M.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 2015, 373, 1195–1206.

Ng, K.-H.; Zhang, S.L.; Tan, H.C.; Kwek, S.S.; Sessions, O.M.; Chan, C.-Y.; Liu, I.D.; Lee, C.K.; Tambyah, P.A.; Ooi, E.E.; et al. Persistent dengue infection in an immunosuppressed patient reveals the roles of humoral and cellular immune responses in virus clearance. Cell Host Microbe 2019, 26, 601–605.e3. [CrossRef]

Bashyam, H.S.; Green, S.; Rothman, A.L. Dengue virus-reactive CD8+ T cells display quantitative and qualitative differences in their response to variant epitopes of heterologous viral serotypes. J. Immunol. 2006, 176, 2817–2824. [CrossRef]

Imrie, A.; Meeks, J.; Gurary, A.; Sukhbataar, M.; Kitsutani, P.; Effler, P.; Zhao, Z. Differential functional avidity of dengue virus-specific T-cell clones for variant peptides representing heterologous and previously encountered serotypes. J. Virol. 2007, 81, 10081–10091. [CrossRef]

Simmons, C.P.; Dong, T.; Chau, N.V.; Thi, N.; Dung, P.; Nguyen, T.; Chau, B.; Thi, L.; Thao, T.; Dung, N.T.; et al. Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. J. Virol. 2005, 79, 5665–5675. [CrossRef]

Hertz, T.; Beatty, P.R.; MacMillen, Z.; Killingbeck, S.S.; Wang, C.; Harris, E. Antibody epitopes identified in critical regions of dengue virus nonstructural 1 protein in mouse vaccination and natural human infections. J. Immunol. 2017, 198, 4025–4035. [CrossRef] [PubMed].

Beatty, P.R.; Puerta-Guardo, H.; Killingbeck, S.S.; Glasner, D.R.; Hopkins, K.; Harris, E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 2015, 7, 304ra141. [CrossRef]

Espinosa, D.A.; Beatty, P.R.; Reiner, G.L.; Sivick, K.E.; Glickman, L.H.; Dubensky, T.W.; Harris, E. Cyclic dinucleotide-adjuvanted dengue virus nonstructural protein 1 induces protective antibody and T cell responses. J. Immunol. 2019, 202, 1153–1162. [CrossRef]

Downloads

Published

2021-11-12

How to Cite

Sohail, S., Farooq, M., Sohail, F., Rana, H., Karim, H., Haider, T., Shakir, A., Zafar, M., & Saadat, S. (2021). Pathogenesis of Dengue virus in Host immune system and its genomic variation. European Journal of Biology, 6(1), 16 - 30. https://doi.org/10.47672/ejb.840

Issue

Section

Articles