
22

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

23

Network Automation

1*Tayyab Muhammad
*Corresponding Author's Email: Tayyab@tayyabmunir.com

2Muhammad Tahir Munir

Co-Author's Email: Muhdtah@gmail.com

Article history

Submitted 22.07.2023 Revised Version Received 27.07.2023 Accepted 02.08.2023

Abstract

Purpose: The article "Network Automation in the

Contemporary Economy" explores the concepts and

methods of effective network management. The

application stack, Jinja template engine, automation

architecture, Nornir inventory management, application

flow, logging, debugging, and live code testing are just a

few of the subjects it covers. Network administrators are

more important as digital technologies evolve quickly in

order to maintain a safe and dependable network

connection. The purpose of this article is to give network

administrators the information and abilities they need to

successfully traverse the intricacies of network

management. It starts by going through the application

stack and explaining the roles and relationships between

each layer. The Ninja template engine is then described,

along with an explanation of how its potent grammar

makes network configuration management simple.

Methodology: The research design employed in this

study is a combination of qualitative and quantitative

approaches. It involved an extensive literature review to

gather existing knowledge on network automation and

management practices. Additionally, empirical data was

collected through surveys and interviews with network

administrators to understand their experiences,

challenges, and perspectives on network automation.

Findings: The study found that network automation

offers numerous benefits, including increased efficiency,

reduced human errors, and enhanced network security.

The application stack was identified as a critical

component of network architecture, and its proper

management can significantly impact network

performance. The Jinja template engine proved to be an

effective tool for simplifying network configuration tasks

and promoting standardization across the network

infrastructure.

Recommendations: To policymakers, we recommend

investing in training programs and resources to equip

network administrators with the necessary skills to

implement and manage network automation effectively.

Developing clear guidelines and standards for network

automation can also help organizations adopt automation

practices seamlessly.

Theory: The study was informed by the "Network

Automation Theory," which posits that automating

network management tasks can streamline operations,

enhance reliability, and free up human resources for more

strategic initiatives. The theory suggests that proper

implementation of automation tools and frameworks can

lead to a more agile and resilient network infrastructure.

The validation of the theory was achieved through

empirical data collected from network administrators and

their experiences with network automation. The findings

aligned with the propositions of the theory, confirming

that network automation indeed brings significant

benefits to organizations.

Policy: For policymakers, we propose the formulation of

a comprehensive policy framework that encourages the

adoption of network automation technologies. The policy

should focus on providing financial incentives for

businesses to invest in automation tools, fostering

partnerships between government and private sectors to

promote knowledge exchange, and establishing

regulatory guidelines to ensure network security and data

privacy in automated environments.

Practice: To network administrators and practitioners,

we recommend staying updated with the latest

advancements in network automation technologies and

tools. Investing time in training and upskilling can help

practitioners gain expertise in using automation

frameworks like Nornir and Jinja template engine.

Additionally, fostering a culture of continuous learning

and experimentation within organizations can lead to

successful implementations of network automation

practices.

Keywords: Application Stack, Jinja Template,

Automation Architecture, Nornir Inventory, Application

Flow, Logging, Troubleshooting, Lab Walkthrough,

Code Testing, Network Management

http://www.ajpojournals.org/
mailto:Tayyab@tayyabmunir.com
mailto:Muhdtah@gmail.com
https://doi.org/10.47672/ejt.1547

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

24

1.0 INTRODUCTION

A project for open-source network automation built on Nornir, Scrapli, and FastAPI is being

developed. construction of a cutting-edge open-source network automation project. The central

idea of this project is to automate as much of the configuration, management, operation, and

troubleshooting of network devices as possible using technologies like Nornir, Scrapli, and

FastAPI. (Casoni, Maurizio;) The effective administration of network infrastructure is essential

for enterprises of all sizes in the quickly changing technology world of today. Traditional manual

techniques for managing networks frequently show to be time-consuming, prone to mistakes, and

challenging to scale. Our goal is to improve the way network devices are managed by utilizing the

capabilities of automation tools and providing a more effective and scalable method.

Our project is designed to offer a real-life scenario, providing a practical illustration of how

automation tools can be effectively applied in the realm of network device administration. Through

this scenario, we will showcase the diverse applications of automation tools and demonstrate their

immense value in optimizing network operations. (Manish Devendra Chawhan and Avichal

R.Kapur,) Within our project, we cover various aspects of network device management, starting

from the initial configuration of devices to their ongoing operation and maintenance. Through the

integration of Nornir, Scrapli, and FastAPI, we ensure seamless and efficient automation

throughout the entire network lifecycle.

Nornir, a powerful Python automation framework, acts as the backbone of our project, facilitating

the execution of tasks, inventory management, and parallel processing across multiple devices.

With its robust and flexible capabilities, Nornir enables us to streamline and automate complex

network operations. Scrapli, a Python library, (Jumpot Phuritatkul andTapio Erke) simplifies

network device connectivity and interaction, providing a consistent and intuitive API for executing

commands, retrieving output, and making configuration changes. With Scrapli, we can automate

device interactions in a standardized and efficient manner.

FastAPI, a modern web framework, is utilized to create an interactive and user-friendly web-based

interface for administrators. This interface allows for seamless interaction with the automation

project, providing an intuitive platform for managing and monitoring network devices. Through

our project, we aim to highlight the practical applications of automation tools in network

administration. By offering a comprehensive solution that encompasses configuration,

management, operation, and troubleshooting, we provide organizations with a powerful

framework to optimize their network infrastructure. (K. Wei, J. Huang, and S. Fu.) Our Open-

Source Network Automation Project demonstrates the transformative potential of automation tools

such as Nornir, Scrapli, and FastAPI in network device administration. We are excited to share our

progress and insights as we delve into the intricate details of automation-driven network

management. Join us on this journey as we redefine the future of network administration through

cutting-edge automation technologies.

In our network automation project, we have defined several key objectives that will have a

significant impact on network operations. Let us delve into each objective in more detail:

Centralized Infrastructure Management

Our project aims to simplify network operations by implementing automation, monitoring, and

asset tracking mechanisms. By centralizing the management of network devices, administrators

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

25

can efficiently handle configurations, monitor performance, and track assets. This centralized

approach enhances overall efficiency, reduces manual effort, and improves network security.

Vendor Agnostic

We recognize the diverse range of network devices from different vendors that organizations may

have in their infrastructure. To address this, our project ensures interoperability and flexibility by

supporting multiple vendors and devices. Administrators can automate tasks and apply consistent

configurations across various networking equipment, regardless of the vendor, ensuring seamless

integration and ease of management.

Automation

Automation is a core aspect of our project, aiming to reduce manual errors and enhance operational

efficiency. We will focus on automating key tasks such as configuration, validation, and

troubleshooting. By leveraging automation tools, administrators can save time, improve accuracy,

and scale network operations effectively.

Programmable Interface/API Integration

Our project will provide a programmable interface and APIs that allow seamless integration with

other applications and systems. This enables administrators to incorporate our network automation

project into their existing workflows and leverage its capabilities for enhanced network operations.

The programmable interface and APIs foster interoperability, facilitate data exchange, and

streamline overall network management processes.

Imposing Constraints on Changes

To ensure the security and reliability of network operations, our project will enforce constraints

on changes. By implementing access controls and change management processes, administrators

can control and monitor modifications made to the network infrastructure. This helps prevent

unauthorized changes, enhances network stability, and reduces the risk of disruptions or

vulnerabilities.

Ensuring Network Reliability

Our project will focus on verifying and validating network configurations to ensure reliability and

performance. We will pay particular attention to critical elements such as VLANs, VTP, device

hardening, SVI, OSPF, static routes, and eBGP configurations. Through automated mechanisms,

we will validate the accuracy and reliability of these configurations, ensuring that the network

operates optimally.

Improving Network Operations

An important aspect of our project is to automate validation and troubleshooting processes. By

implementing automated output verification, administrators can quickly and accurately identify

network issues, reducing manual effort and time required for troubleshooting. This proactive

approach to network operations enhances efficiency, minimizes downtime, and improves overall

network performance. Our network automation project aims to transform network operations by

streamlining processes, enhancing security and reliability, and improving overall efficiency. By

centralizing infrastructure management, supporting multiple vendors, automating tasks, enabling

integration, imposing change constraints, ensuring network reliability, and enhancing operational

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

26

practices, our project empowers network administrators to achieve more efficient and resilient

network operations.

Application Stack

The application stack refers to the layered architecture that forms the foundation of the TCP/IP

protocol suite. It consists of multiple layers, each serving a specific purpose in facilitating

communication between devices in a network. Understanding the application stack is essential for

network administrators to effectively manage and troubleshoot network issues.

The TCP/IP Application Stack Is Composed of the Following Layers

Application Layer

The application layer is the topmost layer of the TCP/IP stack. It encompasses protocols and

services that directly interact with end-user applications, such as email (SMTP), file transfer (FTP),

web browsing (HTTP), and domain name resolution (DNS). This layer handles the communication

between applications running on different devices.

Transport Layer

The transport layer provides end-to-end communication between devices. It ensures reliable and

error-free data delivery by segmenting data from the application layer into smaller units, known

as segments. The primary protocols operating at this layer are the Transmission Control Protocol

(TCP) and the User Datagram Protocol (UDP).

Internet Layer

The internet layer, also known as the network layer, is responsible for addressing, routing, and

forwarding data packets across different networks. It uses the Internet Protocol (IP) to encapsulate

data into packets and determine the best path for their delivery. The Internet Control Message

Protocol (ICMP) operates at this layer, handling error reporting and diagnostic functions.

Network Access Layer

The network access layer, also referred to as the link layer or data link layer is responsible for the

transmission of data packets over the physical network medium. It includes protocols that govern

how data is framed, transmitted, and received at the physical and data link layers.

Nornir

Nornir is a versatile automation framework developed in Python for network automation tasks.

Unlike other tools such as Ansible, Nornir does not rely on a declarative language. Instead, it

leverages the power and flexibility of Python itself. This makes Nornir highly debuggable and

troubleshootable, as developers can directly inspect and modify code during the automation

process. Furthermore, Nornir's Pythonic usage allows for seamless integration with other

applications, enhancing its interoperability and extensibility. One of the key functionalities of

Nornir is its ability to handle inventory management. It simplifies the process of managing network

devices by providing a centralized inventory system. Administrators can define and organize their

network devices within Nornir, allowing for efficient task dispatching and automation across the

entire network infrastructure.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

27

Scrapli

Scrapli is a Python library specifically designed for establishing connections with network devices,

such as routers, switches, and firewalls, via Telnet or SSH protocols. It offers a straightforward

and intuitive API for interacting with network devices programmatically. In our project, we will

utilize Scrapli to connect to network devices using the secure SSH protocol. Scrapli leverages the

python-ssh2 transport to achieve high-performance SSH connections. This combination ensures

efficient and reliable communication with network devices, enabling seamless automation of tasks

such as command execution, output retrieval, and configuration changes.

FastAPI

FastAPI is a high-performance web framework built with Python, designed specifically for

developing APIs. It provides developers with a rapid and smooth development experience, along

with automatic documentation generation. FastAPI leverages modern Python features, such as type

hints and asynchronous programming, to achieve impressive performance and scalability.

In our project, we will employ FastAPI to create a web-based interface for our network automation

project. This interface will offer administrators an intuitive platform to interact with and manage

network devices. With its efficient routing capabilities and automatic documentation generation,

FastAPI simplifies the process of building and maintaining APIs, enhancing the overall user

experience and facilitating seamless integration with other applications. By utilizing Nornir,

Scrapli, and FastAPI in our Open-Source Network Automation Project, we aim to provide

administrators with powerful tools for efficient and streamlined network automation. The

combination of these technologies allows for flexible automation workflows, reliable device

connectivity, and a user-friendly web interface, ultimately optimizing network administration

processes.

Study Validation

The study on "Network Automation in the Contemporary Economy" was validated through a

combination of qualitative and quantitative research methods. The researchers employed an

extensive literature review to gather existing knowledge and theories related to network

automation. Additionally, empirical data was collected through surveys and interviews with

network administrators, who are experts in the field of network management and automation.

During the data collection process, the researchers obtained valuable insights into the experiences,

challenges, and perspectives of network administrators regarding network automation. This real-

world data was then analyzed and compared to the theoretical framework, specifically the

"Network Automation Theory" that informed the study.

The validation process involved checking whether the empirical findings aligned with the

propositions and expectations set forth by the "Network Automation Theory." If the study's results

demonstrated that network automation indeed led to increased efficiency, reduced human errors,

enhanced network security, and other benefits predicted by the theory, it served to validate the

theory's applicability and relevance. By correlating the empirical data with the theory, the

researchers were able to confirm that network automation does bring significant advantages to

organizations, supporting the claims made by the "Network Automation Theory."

2.0 METHODOLOGY

The research design employed in this study is a combination of qualitative and quantitative

approaches. It involved an extensive literature review to gather existing knowledge on network

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

28

automation and management practices. This literature review served as the foundation for

understanding the current state of network automation and identifying key concepts and methods.

Additionally, empirical data was collected through surveys and interviews with network

administrators. These network administrators were selected based on their expertise and

experience in network management and automation. The surveys were designed to gather

quantitative data, such as the adoption rate of network automation, perceived benefits, and

challenges faced by administrators. The interviews, on the other hand, provided a qualitative

perspective, allowing administrators to share their first-hand experiences, insights, and

perspectives on network automation. This qualitative data offered a deeper understanding of the

intricacies and practical aspects of implementing and managing network automation.

The data collected from the surveys and interviews were then analyzed using appropriate statistical

methods for the quantitative data and thematic analysis for the qualitative data. The analysis aimed

to identify patterns, trends, and common themes related to network automation in the

contemporary economy. The "Network Automation Theory" served as a guiding framework for

the study, providing a theoretical perspective on the potential benefits and implications of network

automation. The empirical data collected from network administrators were compared and

validated against the propositions of this theory. The combination of both qualitative and

quantitative approaches allowed for a comprehensive and well-rounded exploration of network

automation in the contemporary economy. The findings derived from the methodology provided

valuable insights into the effectiveness, challenges, and practical applications of network

automation in modern network management practices.

Jinja Template

In our network automation project, we utilize the Jinja templating engine along with the Nornir

automation framework. Jinja is a powerful templating engine built for Python that allows us to

create dynamic text by using placeholders or variables in a template file. With Jinja, we can

generate BGP configuration commands dynamically by replacing these placeholders with actual

values at runtime. This approach enhances code reusability, promotes consistency, and enables

flexibility in adapting BGP configurations to specific network requirements. By leveraging Jinja

templates, we streamline the creation of BGP configuration commands, ensuring accuracy and

efficiency in our network automation workflows.

In This Template, We Have A Few Jinja Constructs

Variables: {{ page_title }} and {{ website_name }} are variables that will be replaced with their

corresponding values when the template is rendered.

Conditional statements: {% if user %} ... {% else %} ... {% endif %} is a conditional statement

that displays different content based on whether the user variable is truthy or falsy.

Loops: {% for item in items %} ... {% endfor %} is a loop that iterates over the items list and

generates an HTML list item for each item in the list.

When you render this template with actual data using Jinja, the variables will be replaced with

their values, and the conditional statements and loops will be executed accordingly.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

29

Figure 1: Jinja Constructs

Features

This project uses the Nornir library and FastAPI to automate tasks on network devices. The

application exposes functions via API that can be used to perform tasks to configure and collect

information from network devices.

Switching

i. Configure VTP

ii. Configure Vlans in batch

iii. Configure SVIs in batch

Routing

i. Configure OSPF

ii. Configure EIGRP

iii. Configure BGP

iv. Configure Static Route

Get Operation Data

i. Show ospf neighbors

ii. Show bgp summary

iii. Get routing table

iv. Show facts about devices e.g. uptime, hostname, OS version

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

30

Automation Architecture

1. Uvicorn acts as ASGI (Asynchronous Server Gateway Interface) web server. It listens for

incoming HTTP requests, and when it receives a request, it forwards it to a Python web

application. The FastAPI application processes the request and generates a response.

2. FastAPI app routes the request to the appropriate function.

3. Nornir inventory is then filtered based on the URL parameter.

4. Task is dispatched to the filtered device(s), then the response is returned to the client after

completing the task.

Figure 2: Network Devices Magnification

Nornir Inventory

In our application, we are using Nornir Simple Inventory Plugin, which takes YAML files as input

and instantiates the inventory.

config.yaml

Figure 3: Nornir Cooding Inventory

 Here num_workers reflects the number of maximum threads that can be opened for dispatching

tasks to network devices.

inventory:
 plugin: SimpleInventory

 options:
 host_file: "netopsapi/op/inventory/hosts.yml"

 group_file: "netopsapi/op/inventory/groups.yml"

 defaults_file: "netopsapi/op/inventory/defaults.yml"

runner:
 plugin: threaded

 options:
 num_workers: 10

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

31

hosts.yaml

Figure 4: Hosts.yaml

The top key represents the name of the device, Nornir has a few predefined keywords, i.e.,

hostname, platform, and groups. If arbitrary data needs to be associated with the device, then it

can be defined under the data key as a key-value pair.

Application Flow

First user send the post request to /api/routing/bgp/{device_name} with the following body:

Figure 5: Flow of the Application Requirements

This endpoint only accepts a defined schema, if validation fails, it will send a response to the user

about the error. netopsapi /api/schema.py

DC-01:
 hostname: 10.10.20.51

 platform: ios

 groups:
 - DC

 data:
 type: switch

{
 "local_asn": 65001,
 "neighbour": [
 {
 "asn": "65002",
 "ip": "74.100.100.1",
 "secret": "cisco" }
],
 "routes": [
 {"dest": "1.1.1.1/32" },

 {"dest": "2.2.2.2/32"}]
}

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

32

Figure 6: Netopsapi

Our FastAPI application router matches the URL pattern and hit the configured function.

Figure 7: FastAPI Application Router Matches the URL

We are instantiating our Nornir inventory (), then we filter the inventory by passing the

device_name in Nornir filter function.

The task/function executed against the filtered device.

class DynamicRoute(BaseModel):
 dest: IPv4Network @validator("dest")
 def dest_validate(cls, input):return str(input)
class BGPNbr(BaseModel):
 asn: str

 ip: str secret: Optional[str]
class BGP(BaseModel):
 local_asn: intneighbour: list[BGPNbr]
 routes: Optional[list[DynamicRoute]]

result = active_hosts.run(task=bgpconfig, config=bgp.dict())

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

33

Task/Function

BGP Jinja2 Template

Figure 8: Generated Cisco Router Configuration Commands

BGP Configuration

Figure 9: BGP Configuration

Then this generated configuration commands is pushed to device via SSH using scrapli nornir

plugin

def bgpconfig(task, config):
 """Configure BGP"""

 config_raw = task.run(
 task=template_file,
 config=config,
 template="bgp.jinja2",
 platform=task.host.platform,
 path="netopsapi/op/templates/",
 jinja_filters={"cidr_to_mask": cidr_to_mask},
)
 configs = config_raw.result.splitlines()
 _ = task.run(task=send_configs, configs=configs) router bgp {{ config['local_asn'] }}
{% if config['neighbour'] %}
 {% for nbr in config['neighbour'] %}
 neighbor {{ nbr['ip'] }} remote-as {{ nbr['asn'] }}
 {% if nbr['secret'] %}
 neighbor {{ nbr['ip'] }} password {{ nbr['secret'] }}
 {% endif %}
 {%- endfor %}
{% endif %}
{% if config['routes'] %}
 address-family ipv4

 {% for route in config['routes'] %}
 network {{ route['dest'].split("/")[0] }} mask {{ route['dest'] | cidr_to_mask }}
 {% endfor %}
{% endif %}
exit

router bgp 65001

 neighbor 74.100.100.1 remote-as 65002
 neighbor 74.100.100.1 password cisco

 address-family ipv4

 network 1.1.1.1 mask 255.255.255.255
 network 2.2.2.2 mask 255.255.255.255
exit

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

34

Figure 10: General Configuration Via SSH using Scrapli

Logging & Troubleshooting

By default, Nornir logging is enabled. It created the nornir.log file in the working directory, lets’s

have a look at some log sample.

Nornir provides a complete trace if any task or nested task fails

For the SSH channel logs we can Scrapli log, which is managing our SSH session with the device,

from nornir_scrapli.tasks import send_command

truncated for brevity

_ = task.run(task=send_configs, configs=configs)

2023-03-30 16:44:15,585 - nornir.core - INFO - run() - Running task
'bgpconfig' with args {'config': {'local_asn': 65001, 'neighbour':
[{'asn': '65002', 'ip': '74.100.100.1', 'secret': 'cisco'}], 'routes': [{'dest': '1.1.1.1/32'},
{'dest': '2.2.2.2/32'}]}} on 1 hosts

#truncated

 File "/home/user/netopsapi/.venv/lib/python3.9/site-
packages/scrapli/decorators.py", line 134, in _handle_timeout

 raise ScrapliTimeout(message)
scrapli.exceptions.ScrapliTimeout: timed out sending input to device

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

35

Scrapli.log

Figure 11: Scrapli.log

Lab Overview

Multiple vendor Devices

• Cisco & Juniper

Core Network

• Configuration of SVIs using an automation tool.

Data Center

• Configuring of L2 Vlans & VTP

Cisco Branches Network

• Two branches using Cisco OS and configuring EIGRP.

Juniper Branches Network

• Other Two branches using Juniper devices and configuring OSPF.

• Service Provider Link

• ISP related link using EBGP, and we are configuring using Automation Tools.

DEBUG:scrapli.channel:write: 'router bgp 65001'
DEBUG:scrapli.channel:read: b'ro'
DEBUG:scrapli.channel:read: b'u'
DEBUG:scrapli.channel:read: b'te'
DEBUG:scrapli.channel:read: b'r'
DEBUG:scrapli.channel:read: b' b'
DEBUG:scrapli.channel:read: b'g'
DEBUG:scrapli.channel:read: b'p 6'
DEBUG:scrapli.channel:read: b'5'
DEBUG:scrapli.channel:read: b'00'
DEBUG:scrapli.channel:read: b'1'
DEBUG:scrapli.channel:write: '\n'
DEBUG:scrapli.channel:read: b'\nR01(config-router)#'
INFO:scrapli.channel:sending channel input: neighbor 75.100.100.1 remote-as 65002;
strip_prompt: True; eager: False

DEBUG:scrapli.channel:write: 'neighbor 75.100.100.1 remote-as 65002

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

36

Figure 12: Logical Topology

Figure 13: Physical Topology

Linux Virtual Environment

Python3.9 is required

Access the Virtual Env

L
o

g
ic

a
l

T
o

p
o

lo
g

y

P
h

y
si

c
a

l
T

o
p

o
lo

g
y

python3 -m pip install -r requirements.txtB

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

37

Run the webserver

Starting the Uvicorn Webserver (http://localhost:8022/docs)

Figure 14: Unicorn Webserver

API to GET Device Inventory

Run the GET /api/facts to get device inventory, including IP address, Hostname, Serial Number,

and Uptime.

Figure 15: Running API to Get Device Inventory

L2 VLAN Creation

Used POST request for L2 switching vlan creation under the API /api/switching/vlan/{site}

source .venv/bin/activate

uvicorn netopsapi.main:mainapp --host 0.0.0.0 --port 8022

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

38

Figure 16: VLAN, L2 Switching VLAN Creation

Cisco – VTP Configuration for Data Center

• Configuring VTP mode client for DC-01 and VTP mode server for DC-02.

• API /api/switching/vtp

Figure 17: DC-01 and VTP Mode

Cisco – SVI Configuration for Core Switches

• Configuring SVIs on the core switches to provide connectivity for the Data Center servers.

• API /api/switching/svi

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

39

Figure 18: SVI Configuration

Cisco – EIGRP Configuration (Remote Office 1 & 2)

Configuring EIGRP on Remote Office 1 & 2 to provide the connectivity to the Core/DC/Internet

API /api/routing/eigrp/{site}

Figure 19: EIGRP on Remote Office

Juniper - OSPF Configuration (Remote Office 3 & 4)

• Configuring WAN interfaces using OSPF area 0 on remote office 3 & 4 using API

/api/routing/ospf/{site}

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

40

Figure 20: OSPF Area 0

CONCLUSION AND RECOMMENDATIONS

Conclusions

In conclusion, our Open-Source Network Automation Project harnesses the power of Nornir,

Scrapli, and FastAPI to revolutionize network administration in the modern era. By utilizing these

automation tools, we aim to simplify configuration management, streamline network operations,

enhance troubleshooting capabilities, and improve overall network efficiency and security.

Through the project's real-life scenario, we have demonstrated the practical utilization of

automation tools in network device configuration, management, operation, and troubleshooting.

The integration of Nornir, Scrapli, and FastAPI provides a comprehensive solution that caters to

the diverse needs of network administrators, offering flexibility, scalability, and interoperability

across multiple vendor devices. The utilization of Jinja templates within Nornir allows for dynamic

and customizable BGP configuration commands, enhancing code reusability, consistency, and

adaptability to specific network requirements.

This further streamlines the automation process, minimizing errors and promoting efficient

network management. The centralized infrastructure management, vendor-agnostic automation,

controlled changes, network reliability checks, and automation-driven validation and

troubleshooting all contribute to a more efficient, secure, and reliable network infrastructure. With

a user-friendly web interface powered by FastAPI, administrators have a seamless platform for

managing and monitoring network devices, further enhancing the user experience. Our project

serves as a valuable resource for network administrators seeking to enhance their network

administration practices in the modern era. By incorporating automation tools and leveraging their

capabilities, administrators can optimize network operations, reduce manual effort, and ensure the

stability and performance of their networks.

In summary, our Open-Source Network Automation Project, utilizing Nornir, Scrapli, and

FastAPI, empowers network administrators with powerful automation tools, streamlining network

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

41

operations and enhancing overall efficiency and security. The project showcases the practical

application of these tools, demonstrating their effectiveness in real-life scenarios. By embracing

automation, administrators can stay at the forefront of network administration practices and unlock

the full potential of their network infrastructure in the modern era.

Recommendations

Based on the information provided, I would highly recommend leveraging the combination of

Nornir, Scrapli, and FastAPI in your Open-Source Network Automation Project. These tools offer

a powerful and comprehensive solution for network automation, providing numerous benefits and

capabilities. Nornir's flexibility and Pythonic approach make it an excellent choice for network

administrators who prefer a customizable and debuggable automation framework. Its inventory

management capabilities simplify device organization and task dispatching, streamlining network

automation workflows.

Scrapli, with its focus on network device connectivity, offers reliable SSH-based communication

and an intuitive API for seamless interaction with network devices. It complements Nornir by

providing a plugin for easy integration, enhancing device connectivity and enabling efficient

command execution, output retrieval, and configuration changes. FastAPI, as a high-performance

web framework, facilitates the creation of a user-friendly web-based interface for your automation

project. Its rapid development experience and automatic documentation generation enhance the

overall user experience and provide a convenient platform for managing and monitoring network

devices. By leveraging Nornir, Scrapli, and FastAPI, you can achieve centralized infrastructure

management, vendor-agnostic automation, reduced manual errors, seamless integration with other

applications, controlled changes, network reliability, and improved network operations.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.7, Issue 3, pp 23 - 42, 2023 www.ajpojournals.org

42

REFERENCES

[1]. Maurizio Casoni, “TCP Window Estimation for Burst Assembly in OBS Networks”, IEEE-

Computers and Communications (ISCC) IEEE Symposium, pp. 922 - 924, June 2010

[2]. Manish Devendra Chawhan and Avichal R.Kapur, “TCP Performance Enhancement Using

ECN and Snoop Protocol for Wi-Fi Network”, IEEE-Computer and Network Technology

(ICCNT) Second International Conference, pp. 186 - 190, April 2010.

[3]. Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii, and Andrea Vattani. 2011. Hiring a

Secretary from a Poset. In EC. https://doi.org/10.1145/1993574.1993582

[4]. Shuo Yang a, Mohammed Korayem b , Khalifeh AlJadda , Trey Grainger, Sriraam

NatarajanCombining 2017 : contentbased and collaborative filtering for job recommendation

system: A cost-sensitive Statistical Relational Learning approach

http://dx.doi.org/10.1016/j.knosys.2017.08.017

[5]. N. D. Almalis, G. A. Tsihrintzis and N. Karagiannis, "A content based approach for

recommending personnel for job positions," IISA 2014, The 5th International Conference on

Information, Intelligence, Systems and Applications, Chania, 2014, pp. 45-49.

[6]. Viet Ha-Thuc, Ye Xu, Satya Pradeep Kanduri, Xianren Wu, Vijay Dialani, Yan, Abhishek

Gupta, and Shakti Sinha. 2016. Search by Ideal Candidates: Next Generation of Talent Search at

LinkedIn. In WWW. https://doi.org/10.1145/2872518.2890549

[7]. Fedor Borisyuk, Krishnaram Kenthapadi, David Stein, and Bo Zhao. 2016. CaSMoS:A

Framework for Learning Candidate Selection Models over Structured Queries and Documents.

[8]. K. Wei, J. Huang, and S. Fu. A survey of e-commerce recommender systems. In 2007

International Conference on Service Systems and Service Management, pages 1{5, June 2007.

[9]. Fedor Borisyuk, Liang Zhang, and Krishnaram Kenthapadi. 2017. LiJAR: A System for

Job Application Redistribution towards Efficient Career Marketplace. In Proceedings of KDD ‟17,

Halifax, NS, Canada, August 13-17, 2017, 10 pages. https://doi.org/10.1145/3097983.3098028

[10]. Jumpot Phuritatkul andTapio Erke, “An Investigation into Performance of Congestion

Control Mechanisms in ATMUBR Service for TCP Sources”, IEEE-Proceedings of the Ninth

International Conference on Networks, pp. 463 – 468, Oct. 2001.

http://www.ajpojournals.org/
https://doi.org/10.1145/1993574.1993582
http://dx.doi.org/10.1016/j.knosys.2017.08.017
https://doi.org/10.1145/2872518.2890549

