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Abstract 

Purpose: The main object of discussing this 

study is to introduce and derive a new 

alternative of the equivalence premium 

principle called the exponential premium 

principle in actuarial science. The research 

elaborates on how past-experience data can 

be incorporated into the calculation of 

premiums based on the exponential premium 

so that the premiums will be more precise and 

fair. Moreover, through the application of 

Bayesian tools and of risk theory, the 

connection between the exponential premium 

principle and the theory of credibility is 

established, leading in turn to the derivation 

of the exponential credibility premium. 

Materials and Methods: The study begins 

with the establishment of the mathematical 

principles for the derivation of different 

methods of loss functions. The exponential 

loss function is one way of presenting the 

formulation of exponential premium 

principles, which makes it different from the 

classical equivalence and expectation 

principles. Bayesian inference provides 

individual experience with input into each of 

the pricing levels. Concepts of credibility 

theory have also been used to demonstrate the 

relation between the exponential premium 

and the credibility premium. 

Findings: The results demonstrate that the 

exponential premium provides an even more 

flexible and theoretically justified framework 

for premium calculations compared to 

traditional ways. The derivation of the 

exponential credibility premium shows that it 

gives an appropriate balance between 

collective risk assessment through the 

collective risk premium and individual 

experience through the credibility premium, 

allowing for more personalized and fair 

insurance pricing. The study also makes note 

of the exponential principle's ability to 

encompass risk variations and shield insurers 

against financial instability. 

Unique Contribution to Theory, Practice 

and Policy: Theoretical contribution: The 

study will enhance the body of knowledge on 

premium calculation principles by 

integrating Bayesian learning with credibility 

theory.  Practical application: The 

exponential credibility premium could 

improve risk assessment and hence enhance 

equity in insurance pricing. Policy 

Implications: The findings may be utilized by 

regulators and insurers to improve the 

process of premium-setting so that at least 

they reflect a balanced consideration of 

collective and individual risk in a more 

definitive way. 
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Credibility theory, Bayesian inference, 
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INTRODUCTION 

When an insurance policy is issued, the insurer agrees to bear at least some risk in 

exchange for a premium payment. An insurance company sells multiple insurance policies 

at once or throughout the year1. Actuaries group risks that share some similarity to 

facilitate processing such a large amount of information. To expand upon the idea of 

similarity, it is a spectrum, at the higher end of which all the risks are identical and the 

actuary’s job is easy. A price that is calculated to be fair for one risk will be fair for every 

other risk within the same group/class. As an illustration, imagine an actuary sitting at a 

desk, staring at a spreadsheet of 10,000 car insurance claims categorized by car brand (e.g., 

BMW, Toyota, or Jaguar). The actuary finds that all BMW drivers make claims of 432 

pounds, while all Toyota drivers make claims of 156 pounds. These classes are considered 

homogeneous. What is the likelihood that this will occur by chance and is it realistic? Does 

the car brand really tell us that much information? What if we considered additional 

subcategories, such as the driver’s age? Would all 30-year- old Toyota drivers make claims 

for the same amount? If an actuary continues to subdivide data until each class has one or 

two data points, the data thereby becomes small and statistically redundant. Thus, seeking 

homogeneity does not make sense. 

To go back to the similarity spectrum, even if homogeneity is not achievable, it does not 

mean it is impossible that claim amounts within a class would be ‘close’ to one another. 

After all, repairs on cheaper cars are not as costly as those for more expensive ones. 

However, the best way to address this is not by setting premiums for a safe driver based 

solely on the high-risk group to which he or she belongs. This approach might discourage 

safe driving habits among policyholders. Thus, heterogeneity within risk classes is a good 

reason to consider individual experiences in pricing policies.  

Brief History: How to Incorporate Individual Experience in Pricing? 

In light of Goulet’s work [5] on credibility theory, there are two recognized approaches. The 

earlier of the two, introduced by Mowbray, dates back to 1914 and is known as the limited 

fluctuation credibility method. It answers the question: How many observations are sufficient 

for past individual experience data to be fully credible? It is an All-or-nothing approach. For 

example, without mathematical details, once a benchmark has been obtained as an outcome of 

400 observations, if two individuals are taken from the same class and one has 390 past 

experience observations and the other has 405, then the first policyholder’s past experience has 

0% credibility despite being relatively close to the benchmark, while the latter has 100% 

credibility. 

The void between zero and full credibility was later filled with the category of partial credibility 

by Albert W. Whitney in 1918. Whitney decided that both information from the overall class 

and from the individual’s experience are important and gave a method for determining a price 

that is balanced between the two sources. This work was built on, and a newer application was 

formulated in two papers by Bailey, one in 1945 and the other in 1950. The more modern 

approach is known as greatest accuracy credibility, and gives credibility ranges from 0% to 

100% depending on how significantly the individual’s experience differs from the rest of the 

class and on its quality. Partial credibility is more realistic and flexible approach especially 

when data is limited. More on the history of credibility theory can be found in Goulet [5]. 

Paper Overview 

Risks are inherently random. Loss functions are used to map random loss to particular 

quantifiable terms. Furthermore, it is possible to formulate premium calculation principles to 

convert losses into monetary terms. In risk theory, various loss functions were introduced. One 
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can name, for example, the famous quadratic loss function, which is used to derive the 

equivalence premium principle. The focus in this paper will be on the exponential loss function 

and on the derivation of the exponential premium principle from it, and how it can be equipped 

with past experience data. The presence of the equivalence principle premium in this work 

serves the purposes of illustration and clarification, as it is assumed that the reader is familiar 

with this premium from classical risk theory. In Chapter 2, two objectives are pursued: The 

first one is to recall Heilmann’s approach in [7] of deriving different premium calculation 

principles from different loss functions. The second one is to examine the properties of the 

exponential principle from risk management perspectives (We refer in this regard to Dhaene et 

al. [8] and to Gerber and Jones [6]). Chapter 3 begins with a review of the concept of Bayesian 

learning through Bayes’ theorem. The discussion then shifts to individual experience-based 

rate-making, and relevant estimations using Bayesian inference on two levels: non-linear 

Bayesian inference, and linear Bayesian inference. Credibility theory in the actuarial world is 

an application of the latter. The chapter goes on to elaborate on the derivation of credibility 

premiums under equivalence and exponential principles. A concise explanation of credibility 

theory, particularly under the equivalence principle, is provided in Bühlmann & Gisler [3]. 

Regarding the credibility premium under the exponential principle, a thorough investigation is 

laid out in Wen et al. [12], and Wen et al. [13]. 

Statement of the Problem 

Exponential premium is frequently mentioned in actuarial literature. However, little they 

explain how it links to credibility theory. This work aims to clarify that link. Future 

researchers may benefit from mathematical reasoning and derivations to improve the 

research on the application of exponential premiums. 

Loss Functions and Premium Principles 

It is the decision-maker’s task to choose an appropriate loss function towards risks arising from 

a particular insured event (e.g. fire, car crash) and its consequences (e.g. medical treatment, 

paying rent for a temporary car). In the simplest words, this concerns the modeling of such 

events taking place, while the details of the choice process are outside the scope of this 

investigation. However, a number of considerations are briefly mentioned. The objectives of 

this chapter are twofold: to pursue Heilmann’s approach in [7] for generating theoretic 

premium calculation principles after the proper loss function is selected, and to emphasize the 

advantages of the exponential premium principle in the risk management and ruin theory 

contexts, as it is the principle of interest in this article. 

All calculations throughout this chapter are for an arbitrary loss random variable, meaning a 

loss that is not classified. Later, a foundation will be established, from which we will move on 

to calculating premiums for parameterized or classified losses in the next chapter. 

Definition 2.1. A loss function is a function L: L0 × G → R that assigns a random variable to a 

loss random variable in L0 and an action in G, where L0 is the space of all real random variables 

and G is the set of possible premiums. The associated expected loss function is defined by l(X, 

P). It is assumed hereafter that the loss random variable is a continuous bounded and non-

negative random variable that its first and second moments exist in addition to its moment-

generating function. 

Definition 2.2. A premium calculation principle is a function H: L0 → R that assigns a real 

number to a loss random variable. 

Losses have different distributions and some of these are symmetric. The quadratic loss 

function is appropriate in that case and it will be used here to illustrate Heilmann's approach 
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for the derivation of a number of premium calculation principles. Let 

𝑙𝑠𝑒(𝑋, 𝑃) = 𝐸(𝑋 − 𝑃)
2                                (2.1) 

Where 𝐸 stands for the expectation under the probability measure. An insurer does not have 

control over the risk 𝑋 occurring, however, he or she has control over the premium parameter𝑃. 

According to Heilmann [7], the insurer has to calculate a price that, intuitively, reduces the 

expected losses to the lowest level possible. In other terms, the appropriate premium ℋ(𝑋) 
in𝐆, for a risk X is the one that minimizes the expected loss function𝑙𝑠𝑒(𝑋, 𝑃). This is expressed 

mathematically as the following minimization problem: 

min
𝑃∈𝐆𝑠𝑒

 [𝑙𝑠𝑒(𝑋, 𝑃)] = 𝑙𝑠𝑒(𝑋,ℋ(𝑋))                     (2.2) 

The solution ℋ(𝑋) to the minimization problem (2.2) can be determined by differentiation. 

Start by simplifying the expression using the linearity property of the expectation operator (cf. 

A.11) as follows: 

𝑙𝑠𝑒(𝑋, 𝑃) = 𝔼[(𝑋 − 𝑃)
2]

 = 𝔼[𝑋2 − 2𝑋𝑃 + 𝑃2]

 = 𝔼[𝑋2] − 2𝔼[𝑋]𝑃 + 𝑃2,

 

We suppose no further constraint on the premium and therefore𝐆 = ℝ, the real line. Take 

partial differentiation with respect to P and equate to zero 

𝜕

𝜕𝑃
𝔼[𝑋2] − 2𝔼[𝑋]

𝜕

𝜕𝑃
𝑃 +

𝜕

𝜕𝑃
𝑃2 = 0

−2𝔼[𝑋] + 2𝑃 = 0
 

Finally, solve for 𝑃 and get the premium principle 

ℋ𝑒(𝑋) = 𝔼[𝑋]                                   (2.3) 

This is called the equivalence principle and it uses only the first moment of the loss 

distribution𝐹𝑋. This principle is used in case of risk indifference or neutrality. It suggests that 

charging a higher premium is as bad as charging a lower premium. This supports the fairness 

of this principle, but because selling products at the break-even price is not profitable, Wen et 

al. suggest in [12] that ruin is inevitable if the insurer relies exclusively on this principle. A 

possible way to avoid that is to calculate a risk loading separately and include it in the 

calculation of the premium. This can be expressed as the following: 

ℋ𝑒𝑥(𝑋) = (1 + 𝛽)𝔼(𝑋), 𝛽 > 0                     (2.4) 

This form is called the expectation principle and it can view as the equivalence principle with 

a risk loading. Bühlmann and Gisler (p.9) [3] described a risk loading as having an economic 

advantage: it protects against market volatility, and thus it can be interpreted as the cost of 

risking the firm's capital. Therefore, not having a built-in risk loading presents a drawback for 

a premium principle. The expectation principle has the advantage of risk loading. However, a 

downside of the expectation principle is that when two groups have the same distribution mean 

and different degrees of fluctuation, an identical premium will be charged to both under this 

principle; this applies to the equivalence principle as well. The variation of the loss distribution 

𝐹𝑋 is not considered. 

As can be seen in Figures 2.1 and 2.2, both loss distributions have the same expected value, 

and thus by the equivalence principle they are to be charged the same premium despite the 

significant difference in their other characteristics other than the first moment. Here are two 

other approaches for pricing that consider the variation in loss distribution in addition to its 
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mean: Variance principle where a risk loading that is proportional to the variance is added: 

ℋvar(𝑋) = 𝔼(𝑋) + 𝛽𝜎
2(𝑋), 𝛽 > 0 

Also, the standard variation principle, where, this time, a risk loading proportional to the 

standard deviation is added: 

ℋdev (𝑋) = 𝔼(𝑋) + 𝛽𝜎(𝑋), 𝛽 > 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Normal Distribution Losses with Mean of 1 and Variance of 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Normal Distributed Loses with Mean of 1 and Variance of 0.25 
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The variance and standard deviation principles produce higher rates for risks with higher 

volatility by including an extra term that serves as a guard against risk variation in comparison 

with the equivalence principle. Shortage of statistical data can make it difficult to recognize the 

loss distribution 𝐹𝑋 fully, which may leave the decision-maker with no choice but to use 

principles that require minimum knowledge of𝐹𝑋, such as principles that only require the first 

and second moments of loss distribution. 

Remark 2.3. If the calculated value of 𝑃 is infinite then the insurer views the underlying risk 

as too high to cover. 

When a decision-maker fails to choose an appropriate loss function that respects the 

characteristics of the loss distribution, thus producing an inappropriate premium principle, it 

leads either to unfair premium pricing or to wrongful disregard of the risk.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Pareto I Distributed Losses with A Mean of 2. The Purple Line Represents the 

Equivalence Principle Premium 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Exponentially Distributed Losses with Mean of 2. The Purple Line Represents the 

Equivalence Principle Premium 
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Bühlmann and Gisler (p.8 [3]) referred to the above-mentioned premium principles as 

‘classical’ pricing rules. This is their summary list: 

1. Expectation premium principle 

2. Standard deviation principle 

3. Variance principle 

4. Exponential principle. 

In the following section, the discussion is dedicated to the exponential premium principle, its 

derivation, and some of its properties. 

The Exponential Premium Calculation Principle 

As stated previously, some loss distributions are asymmetric. When a loss distribution is 

skewed and light-tailed (see Figures 2.3 and 2.4), such characteristics of the loss distribution 

cause the decision-maker to consider an exponential loss function with the following form: 

lex(X, P) = E[(eαX − eαP )2] , α > 0                (2.7)   

Heilmann [7] stated this exponential loss function and proposed that it is possible to use 

the previous optimization procedure applied to the derivation of the equivalence principle 

(2.3) from the quadratic loss function (2.1). Partial differentiation with respect to P is 

taken and equated to zero to attain the desired minimizer Hex(X): 

𝜕

𝜕𝑃
𝑙𝑒𝑥(𝑋, 𝑃) = 0

𝜕

𝜕𝑃
𝔼[(𝑒𝛼𝑋 − 𝑒𝛼𝑃)2] =

𝜕

𝜕𝑃
𝔼[𝑒2𝛼𝑋 − 2𝑒𝛼𝑋𝑒𝛼𝑃 + 𝑒2𝛼𝑃]

 =
𝜕

𝜕𝑃
𝔼[𝑒2𝛼𝑋] − 2𝔼[𝑒𝛼𝑋]

𝜕

𝜕𝑃
𝑒𝛼𝑃 +

𝜕

𝜕𝑃
𝑒2𝛼𝑃

 = −2𝛼𝔼[𝑒𝛼𝑋]𝑒𝛼𝑃 + 2𝛼𝑒2𝛼𝑃 = 0

 So, 𝑒2𝛼𝑃 = 𝔼[𝑒𝛼𝑋]𝑒𝛼𝑃

𝑃 =
1

𝛼
ln 𝔼[𝑒𝛼𝑋]

 

We conclude that: 

ℋ𝑒𝑥(𝑋) =
1

𝛼
ln 𝔼[𝑒𝛼𝑋]                                (2.8) 

The Exponential Premium Principle as a Risk Measure 

Just like a thermometer translates heat to Fahrenheit or degrees Celsius or as a weight scale 

translates weight to kilograms, pounds or whatever unit suits the intended objective, 

economists use risk measures to quantify a random risk, into a real number. Understandably, 

any economic entity wants to monitor the risks surrounding its area of business. This is 

especially true for the insurance sector, where risk is the commodity traded for profit. 

Definition 2.4. A risk measure is any function 𝜌: 𝐿0 → ℝ that maps a loss random variable to 

a real number. 

Premium principles, as defined in Definition 2.2, clearly match the definition of a risk measure. 

Premium principles are risk measures in the insurance context. However, they must satisfy at 

least some properties to justify their use. In the following text it will be described how the 

various properties of the exponential premium principle as a risk measure make it a desirable 

approach to pricing in the actuarial realm. Wen et al. [12] and Kaas et al., p. 120-121 [9] 

showed that the exponential principle fulfills the following properties for any loss random 
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variables 𝑋, 𝑌 and a constant∈ ℝ : 

1. Monotonicity: ℋ𝑒𝑥(𝑋) ≤ ℋ𝑒𝑥(𝑌), if 𝑋 ≤ 𝑌 almost surely 

            Proof. Since the logarithmic and exponential functions are increasing, then 

𝑋 ≤ 𝑌 ⇒ 𝛼𝑋 ≤ 𝛼𝑌 , 𝛼 > 0

 ⇒ 𝑒𝛼𝑋 ≤ 𝑒𝛼𝑌

 ⇒ 𝔼(𝑒𝛼𝑋) ≤ 𝔼(𝑒𝛼𝑌)

 ⇒ ln 𝔼(𝑒𝛼𝑋) ≤ ln 𝔼(𝑒𝛼𝑌)

 ⇒
1

𝛼
ln 𝔼(𝑒𝛼𝑋) ≤

1

𝛼
ln 𝔼(𝑒𝛼𝑌)

 ⇒ ℋ𝑒𝑥(𝑋) ≤ ℋ𝑒𝑥(𝑌)

 

This means that this premium principle is somewhat logical, in that it will set a higher 

premium for higher risk. 

2. No unjustified loading: ℋ(c) = c 

            Proof. 

ℋex(c) =
1

α
ln 𝔼[eαc] =

1

α
ln eαc =

αc

α
= c                      (2.9) 

3. No rip-off: ℋex(X) ≤ max[X] 

            Proof. Since the exponential premium principle is monotone and 𝑋 ≤ max(𝑋) : 

ℋ𝑒𝑥(𝑋) ≤ ℋ𝑒𝑥(max(𝑋)) = max(𝑋)                              (2.10) 

This is a useful property because whatever the price premium principle produces, it will never 

exceed the maximum value the loss 𝑋 can possibly take. For example, if a museum owner 

wishes to buy a policy against theft, and the pieces on exhibit are worth one million pounds in 

total, it would be unreasonable to charge a premium over that amount to cover the policy. 

4. Safety loading: ℋex(X) ≥ 𝔼[X] 

            Proof. Let the function 𝑔:ℝ → ℝ be defined by𝑔(𝑥) = 𝑒𝛼𝑥, then 𝑔 is convex 

because𝑔′′ > 0. Hereby Jensen's inequality (cf. Definition A.17) states the following: 

𝔼[𝑒𝛼𝑋] ≥ 𝑒𝛼𝔼[𝑋]

ln 𝔼[𝑒𝛼𝑋] ≥ ln 𝑒𝛼𝔼[𝑋]

1

𝛼
ln 𝔼[𝑒𝛼𝑋] ≥

𝛼𝔼[𝑋]

𝛼
1

𝛼
ln 𝔼[𝑒𝛼𝑋] ≥ 𝔼[𝑋]

                                      (2.11) 

The exponential premium principle guarantees a price greater than the loss mean. It anticipates 

positive gain on averageℋ𝑒𝑥(𝑋) − 𝔼[𝑋] ≥ 0. 

Combining the previous two properties ensures that the exponential premium principle gives a 

price somewhere between the mean and the maximum value of 𝑋, a range where both insurer 

and insured are, at a minimum, safe from extreme pricing situations, an observation noted down 

by Gerber and Jones in [6].  
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Mean loss ≤ exponential premium ≤ maximum loss 

5. Invariant to displacements: ℋex(X + c) = ℋex(X) + c 

          Proof. 

ℋ𝑒𝑥(𝑋 + 𝑐) =
1

𝛼
ln 𝔼[𝑒𝛼(𝑋+𝑐)]

 =
1

𝛼
ln 𝔼[𝑒𝛼𝑋𝑒𝛼𝑐]

 =
1

𝛼
ln (𝑒𝛼𝑐𝔼[𝑒𝛼𝑋])

 =
1

𝛼
(ln 𝑒𝛼𝑐 + ln 𝔼[𝑒𝛼𝑋])

 =
1

𝛼
(𝛼𝑐 + ln 𝔼[𝑒𝛼𝑋]) = ℋ(𝑋) + 𝑐

 

The interpretation of property (5) is that if a loss is shifted by a certain amount, then the 

premium is shifted by that same amount without extra charges. 

6. Additivity for independent risks: Hex(X+Y ) = Hex(X)+Hex(Y ) for 

independent X, Y 

Proof. 

ℋ𝑒𝑥(𝑋 + 𝑌) =
1

𝛼
ln 𝔼[𝑒𝛼(𝑋+𝑌)]

 =
1

𝛼
ln 𝔼[𝑒𝛼𝑋𝑒𝛼𝑌]

 =
1

𝛼
ln (𝔼[𝑒𝛼𝑋]𝔼[𝑒𝛼𝑌])  by independence of 𝑋 and 𝑌 (cf. A. 11) 

 =
1

𝛼
(ln 𝔼[𝑒𝛼𝑋] + ln 𝔼[𝑒𝛼𝑌])

 =
1

𝛼
ln 𝔼[𝑒𝛼𝑋] +

1

𝛼
ln 𝔼[𝑒𝛼𝑌]

 = ℋ𝑒𝑥(𝑋) +ℋ𝑒𝑥(𝑌)

 

This proof implies that if an insurer wishes to calculate the overall premium for two 

independent risks, then this simply achieved by adding together each risk’s premium. 

7. Iteratively: ℋ𝑒𝑥(𝑋) = ℋ𝑒𝑥(ℋ𝑒𝑥(𝑋 ∣ 𝑌)); for all 𝑋, 𝑌 and the conditional 

premium principle given 𝑌 is defined by ℋ𝑒𝑥(𝑋 ∣ 𝑌) =
1

𝛼
ln 𝔼[𝑒𝛼𝑋 ∣ 𝑌] 

            Proof. 

ℋ𝑒𝑥(ℋ𝑒𝑥(𝑋 ∣ 𝑌)) =
1

𝛼
ln 𝔼[𝑒𝛼ℋHex(𝑋∣𝑌)]

 =
1

𝛼
ln 𝔼 [exp (𝛼

1

𝛼
ln 𝔼[𝑒𝛼𝑋 ∣ 𝑌])]

 =
1

𝛼
ln 𝔼[𝔼[𝑒𝛼𝑋 ∣ 𝑌]]

 =
1

𝛼
ln 𝔼[𝑒𝛼𝑋] = ℋ𝑒𝑥(𝑋)

 

Notice here that premium principle is applied twice, and this seems to cancel out the effect 

of conditioning on Y as a result of the Tower property of expectations (cf. Proposition 
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A.12). It is worth mentioning that the famous Tower property of expectations is also called 

the law of iterated expectations 

The Exponential Premium Principle is not Coherent 

Risk measures are the main topics discussed in quantitative risk management. When risk 

measures were introduced, their coherency as it is termed by Artzner et al. [2], was also 

discussed. However, the exponential principle is not coherent, and this impairs the claim 

that it is a good pricing tool. 

Definition 2.5. (Coherent premium principle/risk measure) a risk measure ρ is said to be 

coherent if, for any losses X and Y and a constant c ∈ R, it fulfills the following properties: 

1. Positive Homogeneity: ρ(cX) = cρ(X) , c > 0 

2. Invariant to displacements: ρ(X + c) = ρ(X) + c 

3. Monotonicity: ρ(X) ≤ ρ(Y ) , if X ≤ Y almost surely 

4. Subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y). 

The exponential premium principle violates both the positive homogeneity and 

subadditivity conditions, showing it is not coherent. 

Proof. The exponential premium principle is not sub-additive for dependent X, Y. Here we 

provide a counterexample. We consider a uniformly distributed random variable U on [0, 

1] and define X = Y = ln (U)/α, then 

ℋ𝑒𝑥(𝑋 + 𝑌) = −ln (3)/𝛼 and ℋ𝑒𝑥(𝑋) +ℋ𝑒𝑥(𝑌) = −2ln (2)/𝛼

 then, ℋ𝑒𝑥(𝑋 + 𝑌) > ℋ𝑒𝑥(𝑋) +ℋ𝑒𝑥(𝑌)
 

Subadditivity relates to risk diversification: it means that aggregating risks together in a single 

portfolio is less risky than taking each risk individually. As a premium principle. For example 

take the scenario: (i) A portfolio of fire insurance for an entire city's housing stock. On the 

other hand, another portfolio (ii) consists of houses, each located in a different city. The 

portfolio (i) is charged a lower premium, although it is a better candidate for greater 

simultaneous loss; the houses are next to each other, so if one catches fire it is more likely that 

the adjacent house, which is also in that portfolio, catches fire. This property does not 

differentiate between positively dependent and independent losses. 

Regarding the property of positive homogeneity, it does not hold. The counterexample given 

above states thatℋ𝑒𝑥(2𝑋) ≠ 2ℋ𝑒𝑥(𝑋). 

Criticisms of subadditivity, positive homogeneity, and other properties of risk measures in 

insurance practice can be found in Dhaene et al. [8]. 

Premium Principles in a Bayesian Framework 

In Chapter 1, it was mentioned that insurers classify data and group them based on some 

degree of similarity in their quantifiable characteristics. However, al- though it is possible 

to sort, for example, insured car drivers by the number of cylinders in the engines of the 

cars that they drive, it is not possible to quantify those drivers’ sense of responsibility. The 

latter characteristics are called risk pro- files, and the groups are called collectives. Pricing 

rules introduced in Chapter 2 are functions that take the unclassified loss random variable 

as an argument. In this chapter, Bayes theory and risk theory are simultaneously used to 

enable premium calculation principles, particularly equivalence and exponential 

principles, to take the classified risk as an argument and give the desired corresponding 

price for the insured’s individual experience. Ways of estimating individual premiums 

under equivalence and exponential principles are introduced. This helps in the 

identification of the link between credibility theory and the exponential premium principle 
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that takes place later in this chapter. 

Throughout this chapter the following definitions and assumptions hold: 

 We consider the sequence (𝑋1, … , 𝑋𝑛, 𝑋𝑛+1) of identically distributed random variables 

as losses in a collective in years 1,2, … , 𝑛, 𝑛 + 1 respectively. 𝑋1 Is a bounded non-

negative random variable, with finite moments and its moment generating function 

exists, and denote 𝑓𝑋1 the probability distribution function (pdf), and by 𝐹𝑋1 the 

cumulative distribution function for𝑋1. Further let the vector �⃗� = (𝑋1, 𝑋2, … , 𝑋𝑛) to be 

the previous claim observations vector from year 1 through𝑛, and �⃗� is a realization of�⃗�. 

 We define Range (𝑉):= {𝑣 ∈ ℝ ∣ 𝑓𝑉(𝑣) > 0} where 𝑓𝑉 is the pdf of the random 

variable𝑉. 

Assumption 3.1. The risk profile that produced a risk 𝑋𝑗 is unknown/random. The risk profile 

is denoted 𝜃 as a sample from the random variableΘ, with 𝑓Θ the probability distribution 

function forΘ, and 𝐹Θ the cumulative distribution function. The sample space of Θ is the set 

Range ( Θ ). 

Assumption 3.2. Given the risk profile Θ = 𝜃, 𝑋𝑗 's are independent and identically distributed. 

It is to be noted that 𝑋𝑗 's and Θ are dependent. 

 We define prior cumulative distribution function: 

𝐹Θ(𝜃) → [0,1], 𝜃 ∈ Range(Θ) 

 Define posterior cumulative distribution function: 

𝐹Θ∣𝑋(𝜃) → [0,1], 𝜃 ∈ Range(Θ) 

 We define loss function 𝑙 as in Definition 2.1 from Chapter 2. 

Bayesian Learning 

The a priori distribution represents the actuary’s initial view about the likely distribution 

of Θ. That view is formed at the beginning of the year, before the arrival of any claims. At 

the end of the year, in the light of new data, a better estimate of the initial distribution is 

formed. This updated view is called posterior distribution and it is mathematically 

computed via Bayes theorem (cf. Theorem A.5). 

The following example is intended to illustrate the corresponding distributions at each 

stage of Bayesian learning. 

Example 3.3. The number of clients’ meetings in a given day j(j = 1, 2...) at a law firm 

Nj|Λ = λ are independent Poisson random variables with mean λ that varies according to 

the time a client spends waiting before entering an attorney's office. The Poisson's pdf is given 

by 

𝑓𝑁∣Λ(𝑛 ∣ 𝜆) =
𝜆𝑛𝑒−𝜆

𝑛!
, 𝜆 > 0, 𝑛 = 0,1,2, … 

The firm hires a statistician to give an insight into the distribution of waiting times. As a starting 

point, the statistician uses the prior distribution ofΛ, which is a gamma distribution expressed 

by the following pdf 

𝑓Λ(𝜆) =
25

24
𝜆5−1𝑒−2𝜆, 𝜆 > 0 

The firm allows the statistician to spend time in the firm to collect data. In the following two 
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days, a randomly selected attorney meets five clients on day one and three clients on day two. 

Now, the statistician applies Bayes theorem (cf. Theorem A.5) to update the prior distribution 

as follows: 

𝑓Λ∣𝑁1=5,𝑁2=3(𝜆) =
𝑓𝑁1,𝑁2∣Λ(5,3 ∣ 𝜆) ⋅ 𝑓Λ(𝜆)

𝑓𝑁1,𝑁2(5,3)

 =
1

𝑓𝑁1,𝑁2(5,3)
⋅ (
𝜆5𝑒−𝜆

5!
) (
𝜆3𝑒−𝜆

3!
) (
25

24
𝜆5−1𝑒−2𝜆)

 

The numerator 𝑓𝑁1=5,𝑁2=3(𝑛) is a constant. So, for simplicity, all the constants are gathered 

under one notation𝑐, then the posterior distribution is given as: 

𝑓Λ∣𝑁1=5,𝑁2=3(𝜆) = 𝑐 ⋅ 𝜆
12𝑒−4𝜆 

The posterior found is a pdf function and it must have an integral of one over all values of 𝜆 

(cf. Definition A.2), 

∫  
∞

0

𝑐 ⋅ 𝜆12𝑒−4𝜆𝑑𝜆 = 1 

This looks like a form of Gamma pdf. It is possible to pull the constant 𝑐 out of the integral and 

multiply and divide by another proper constant to create an integral of the Gamma∼ (13, 4) pdf 

to facilitate the integration 

𝑐 ⋅
Γ(13)

413
∫  
∞

0

 
413

Γ(13)
𝜆13−1𝑒−4𝜆𝑑𝜆

⏟              
=1

= 1 

Consequently:                         𝑐 =
413

Γ(13)
 

And hence: Λ| (N1, N2) = (2, 3) ∼ Gamma (13, 4). This is the distribution of Λ after learning. 

It is the posterior distribution. 

Collective Risk Premium: Price for Everyone 

In insurance, a premium is always set for the amount of a claim that will occur in the future; 

otherwise, it is not insurance. Thus, proper forecasting is a necessity. An actuary currently in 

year n has to set a price for a claim that may arrive in year n+1. It is believed that the risks in a 

collective are similar but different (see Chapter 1), and the premium that expresses this 

similarity is called the collective risk premium. It is, loosely speaking, an average claim value 

for all profiles. Therefore, Xn+1 is not conditioned on another random variable representing 

the profile. Under the equivalence principle, the collective premium is  

𝜇0: = 𝔼[𝑋𝑛+1] 

Under the exponential premium principle, the collective premium is: 

𝜇0: =
1

𝛼
ln 𝔼[𝑒𝛼𝑋𝑛+1] 

Why not stop here? 

As in any line of business, insurance companies want to earn more than they lose while 

managing competition with their peer companies. Of course, if a premium is calculated as in 

(3.1) and (3.2), the actual risks will sometimes be higher and sometimes lower. It is easy to 

imagine that this would be very convenient for customers with higher risks, while the same 

cannot be said for those with lower risks. This is called anti-selection, where the company 
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becomes attractive to the worst risks, while the good risks seek fairer premiums elsewhere. 

This phenomenon is explained in Bühlmann and Gisler [3] (p. 11). In Chapter 1, it is 

emphasized that no collective of risks, called classes, is homogeneous. Grouping risks reduces 

the variation between them, but it does not thereby vanish. All collectives are naturally 

heterogeneous because individuals/policyholders are naturally different. Therefore, collective 

risk premiums are especially unfair to those who stand out the most, among other risks, in their 

collective. This motivates insurers to consider individual risk premiums, which represent, again 

in loose terms, the average, but specifically the average 

Over risks within a risk profile.  

Individual Risk Premium: More Tailored Rating 

Here, the concept of experience rating becomes relevant, with the idea of a premium that 

incorporates past information for rate-making. In other words, the data produced by the 

individual’s profile is used. The following definition is found in Bühlmann and Gisler , [3] (p. 

9). 

Definition 3.4. (Individual equivalence premium) For Xj (j = 1, ..., n) an observed loss in year 

j and risk profile Θ, the individual premium with respect to the equivalence principle for next 

year’s loss Xn+1 is 

𝜇Θ: = 𝔼[𝑋𝑛+1 ∣ Θ] 

Heilmann [7] also showed how a ‘profiled’ individual exponential premium eμΘ can be 

obtained by minimizing the conditional exponential loss function with respect to eμΘ. The 

following definition is proposed by Heilmann [7]  

Proposition 3.5. (Individual exponential premium) For Xj (j = 1, 2..., n) an observed loss in 

year j and risk profile Θ, the individual premium with respect to the exponential loss function 

(2.7) for next year’s loss Xn+1 is: 

μ ̃_Θ:=1/α lnE[e^(αX_(n+1) )∣Θ] 

Proof. 

𝜕

𝜕𝜇Θ
𝑙(𝑋𝑛+1, 𝜇Θ)|  Θ =

𝜕

𝜕𝜇Θ
𝔼[(𝑒𝛼𝑋𝑛+1 − 𝑒𝛼�̃�Θ)2 ∣ Θ]

 =
𝜕

𝜕𝜇Θ
𝔼[𝑒2𝛼𝑋𝑛+1 − 2𝑒𝛼𝑋𝑛+1𝑒𝛼�̃�Θ + 𝑒2𝛼�̃�Θ ∣ Θ]

 =
𝜕

𝜕𝜇Θ
𝔼[𝑒2𝛼𝑋𝑛+1 ∣ Θ] − 2𝔼[𝑒𝛼𝑋𝑛+1 ∣ Θ]

𝜕

𝜕𝜇Θ
𝑒𝛼�̃�Θ +

𝜕

𝜕𝜇Θ
𝑒2𝛼�̃�Θ

 = −2𝛼𝔼[𝑒𝛼𝑋𝑛+1 ∣ Θ]𝑒𝛼�̃�Θ + 2𝛼𝑒2𝛼�̃�Θ

 

Equating the differentiated Bayes risk to zero we get 

 → 𝑒2𝛼�̃�Θ = 𝔼[𝑒𝛼𝑋𝑛+1 ∣ Θ]𝑒𝛼�̃�Θ

 → 𝑒𝛼�̃�Θ = 𝔼[𝑒𝛼𝑋𝑛+1 ∣ Θ]

 → ln 𝑒𝛼�̃�Θ = ln 𝔼[𝑒𝛼𝑋𝑛+1 ∣ Θ]

 → 𝛼𝜇Θ = ln 𝔼[𝑒
𝛼𝑋𝑛+1 ∣ Θ]

→ 𝜇Θ =
1

𝛼
ln 𝔼[𝑒𝛼𝑋𝑛+1 ∣ Θ]

 

The same idea of Bayesian learning applied in Example 3.3 can also be applied to premium 

principles. In contrast to collective premiums, the premiums to be introduced in the next section 

are ones that can actually learn and improve as new data becomes available. 
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Bayes Estimators and Premium Principles 

The process throughout this section is essentially that of decision theory, but random variables 

here have a priori and posterior distributions. Thus, it is decision theory with a Bayesian 

structure. As in Chapter 2, an insurer wants to find a premium that minimizes the expected loss. 

In this section, the goal is particularly to find prices that are estimators of the individual 

premiums (3.4) and (3.5) by performing minimization procedures to the expected loss 

functions, to achieve the best estimator among all possible estimators, that is, the Bayes rule. 

However, there is an alternative equivalent method that gives the same best estimator or Bayes 

rule which is minimizing the posterior risk function. 

Definition 3.6. (Posterior risk) For the past observations vector�⃗�, let 𝛽 be some unknown 

parameter. �̂�(�⃗�) = �̂� Is some estimator of 𝛽 and for a loss function 𝑙 defined as in (Definition 

2.1), 𝔼[𝑙(𝛽, �̂�) ∣ �⃗�] is the posterior risk of�̂�. 

Bayes Premium under the Equivalence Principle 

As the individual equivalence premium 𝜇Θ given in Theorem 3.7 is a conditional expectation, 

it is a random variable. Its exact value can only be estimated. The estimation is obtained by 

solving a minimization problem of the posterior risk of �̂�Θ over the set of all possible individual 

equivalence premium estimators 𝐀 = {�̂�Θ(�⃗�): �̂�Θ < ∞} using the quadratic loss function 𝑙 
(2.1), 

min
𝜇Θ̂∈𝐴

 𝔼[𝑙(𝜇Θ, 𝜇Θ̂)]                                                   (3.3) 

In order to attain the best individual equivalence premium estimator�̂�Θ
∗ , Heilmann [7] gave the 

form of the Bayes equivalence premium �̂�⊖
∗  via the following theorem: 

Theorem 3.7. (Bayes equivalence premium) For the previous observations vector �⃗� and risk 

profileΘ, the Bayes premium with respect to the quadratic loss function (2.1), assuming �̂�Θ
∗  is 

a realistic premium to be charged,�̂�Θ
∗ ∈ 𝐀, is 

�̂�⊖
∗ : = 𝔼[𝜇Θ ∣ �⃗�]                                                   (3.4) 

Proof. Conditional expectations are linear operators, as are non-conditional expectations. 

Additionally, the Tower property of expectation is used. Now, for any possible individual 

premium estimator �̂�Θ ∈ 𝐀 

𝔼[𝐿(𝜇Θ, �̂�Θ) ∣ �⃗�] = 𝔼[(𝜇Θ − �̂�Θ)
2 ∣ �⃗�]

 = 𝔼[(𝜇Θ − �̂�Θ)
2 ∣ �⃗�]

 = 𝔼[𝜇Θ
2 − 2𝜇Θ�̂�Θ + �̂�Θ

2 ∣ �⃗�]

 = 𝔼[𝜇Θ
2 ∣ �⃗�] − 2𝔼[𝜇Θ ∣ �⃗�]�̂�Θ + �̂�Θ

2

 

Minimization is obtained via partial differentiation with respect to �̂�Θ 

𝜕

𝜕�̂�Θ
(𝔼[𝜇Θ

2 ∣ �⃗�] − 2𝔼[𝜇Θ ∣ �⃗�]�̂�Θ + �̂�Θ
2) = −2𝔼[𝜇Θ ∣ �⃗�] + 2�̂�Θ                  (3.5) 

Equating (3.5) to zero 

 Equating (3.5) to zero 

−2𝔼[𝜇Θ ∣ �⃗�] + 2�̂�Θ = 0

→ �̂�Θ
∗  = 𝔼[𝜇Θ ∣ �⃗�]

 

The Bayes premium under the quadratic loss function has a nice property: if the insurer does 
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not have past claim experience, it produces the collective risk premium. 

Bayes Premium under the Exponential Principle 

In Definition 3.4, the individual exponential premium 𝜇Θ is random due to the fact that Θ is 

unknown. Hence, it has to be estimated. Heilmann [7] obtained the optimal individual 

exponential premium estimator �̂�Θ
∗  by minimizing Posterior risk of �̂�Θ this time using the 

exponential loss function over the set of all individual exponential premium estimatorsÃ =

{�̂�Θ(�⃗�): �̂�Θ < ∞}. 

min
�̃�Θ∈𝔸

 𝔼[𝐿(𝜇Θ, �̂�Θ) ∣ �⃗�] = 𝔼[𝐿(𝜇Θ, 𝜇Θ
∗ ) ∣ �⃗�] 

The following theorem can be found in Heilmann [7]: 

Theorem 3.8. (Bayes exponential premium) For the previous observations vector �⃗� and a risk 

profileΘ, the Bayes premium with respect to the exponential loss function (2.7), assuming �̂�Θ
∗  

is a realistic premium to be set, that is,�̂�Θ
∗ ∈ Ã, is 

�̂�⊖
∗ : =

1

𝛼
ln 𝔼[𝑒𝛼�̃��̃� ∣ �⃗�] 

Proof. As stated above, conditional expectations are linear operators, as are nonconditional 

expectations. Now, for any possible individual exponential premium estimator �̂�Θ ∈ Ã 

𝔼[𝐿(𝜇Θ, �̂�Θ) ∣ �⃗�] = 𝔼 [(𝑒
𝛼𝜇 − 𝑒𝛼�̂�

𝜃

)
2

∣ �⃗�]

 = 𝔼[𝑒2𝛼𝜇�̃� − 2𝑒𝛼�̃��̃�𝜃𝑒𝛼�̂� + 𝑒2𝛼𝜇�̃� ∣ �⃗�]

 = 𝔼[𝑒2𝛼�̃�𝜃 ∣ �⃗�] − 2𝔼[𝑒𝛼�̃�𝜃 ∣ �⃗�]𝑒𝛼�̃��̂� + 𝑒2𝛼�̃�Θ

 

Minimization is obtained via partial differentiation with respect to �̂�Θ 

𝜕

𝜕�̂�Θ
(𝔼[𝑒2𝛼�̃��̃�𝜃 ∣ �⃗�] − 2𝔼[𝑒𝛼�̃�Θ ∣ �⃗�]𝑒𝛼�̂̃�𝜃 + 𝑒2𝛼�̂̃�Θ) = −2𝔼[𝑒𝛼�̃�Θ ∣ �⃗�] + 2𝑒𝛼�̃̃�Θ 

Equating (3.8) to zero 

−2𝔼[𝑒𝛼�̃�Θ ∣ �⃗�] + 2𝑒𝛼�̃�Θ  = 0

𝑒𝛼�̃�Θ  = 𝔼[𝑒𝛼�̃�Θ ∣ �⃗�]

→ �̂�Θ
∗  =

1

𝛼
ln 𝔼[𝑒𝛼�̃�Θ ∣ �⃗�]

 

Why not stop here? 

Bühlmann and Gisler, [3] (p. 49) imposed simplicity as a requirement of a premium formula. 

They had a real world insight regarding the simplicity of the Bayes premium. In order to find 

the Bayes premium, it is necessary to know the prior and the posterior distributions. Neither of 

these is easy to specify in practice. The Bayes premium is typically found through complicated 

methods and it cannot be found by any simple means. 

The Bayes premium is the best individual premium estimator among the class of all possible 

individual premium estimators. To solve the complexity problem as per Bühlmann and Gisler, 

[3] (p. 55), it is possible to confine the ‘search’ to some narrower class. That is, the class of the 

individual premium estimators that are linear in observations. So, this time the Bayes rule is 

the best linear Bayes premium among all possible linear Bayes premiums. An application of 

linear Bayesian methods is exhibited in credibility theory, as per Wen et al. [12]. In the context 
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of credibility theory the best linear Bayes premium is called the credibility premium; this is 

developed further in the next section.  

Premium Principles and Credibility Theory 

Take the case of car insurance, for example. Ideally, those insured should be charged premiums 

that correspond to their own behavior. If an insured person drives safely but belongs to a high-

risk collective, then one might expect an insurer to charge him or her a higher premium than 

the insured ‘deserves’, and unfortunately, this might be the case. It is stated in Bühlmann and 

Gisler, [3] (p.2) that, in practice, the observed individual experience data is too limited to be 

eligible for the application of the law of large numbers. Bayesian statistics allow the use of 

both sources of information: from the collective experience, and from the individual experience 

via credibility theory; this combination of information 

Contributes to the calculation of the credibility premium.  

The Credibility Premium under the Equivalence Principle 

Estimating individual premiums has been the goal since Subsection 3.1.2. For the individual 

equivalence premium (see Theorem 3.7), the intuition here is similar to the one in Subsection 

3.2.1. The objective is to find an individual equivalence premium estimator that minimizes the 

expectation of the quadratic loss function (2.1). However, an important distinction is that there 

is a restriction to the pool of 𝜇Θ estimators. Now, the minimization is over the set of all 

individual equivalence premiums estimators are linear with respect to observations, denoted by 

the setD = {𝑃𝑐: 𝑃𝑐 = 𝑎0 + ∑𝑗=1
𝑛  𝑎𝑗𝑋𝑗;  𝑎0, 𝑎𝑗(𝑗=1,…,𝑛) ∈ ℝ}. The goal is to find the best linear 

estimator�̂�𝑐. 

Let 𝐿 be the quadratic loss function (2.1). The optimization problem can be performed as: 

min
𝑃∈∈𝐷

 𝔼[𝐿(𝜇Θ, 𝑃
𝑐)]                                                  (3.9) 

In order to attain the best linear individual premium estimator, that is, the credibility 

premium�̂�𝑐. 

Assumption 3.9. (Simple credibility model building blocks) 

 Assumptions 3.1 and 3.2. 

 𝜇Θ = 𝔼[𝑋𝑗 ∣ Θ] 

 𝜇0 = 𝔼[𝑋𝑗] = 𝔼 [𝔼[𝑋𝑗 ∣ Θ]] using Tower property (cf. Proposition A.12) 

 𝜎Θ
2 = Var(𝑋𝑗 ∣ Θ) 

 𝜏2 = Cov(𝑋, 𝜇Θ) = Var(𝜇Θ) 

 

 

 

 

 

 

 

The following theorem can be found in Bühlmann and Gisler [3], (p. 56). It supplies the general 

A Recap from Probability theory 

 𝑋‾ =
1

𝑛
∑𝑗=1
𝑛  𝑋𝑗 

 𝔼[𝑋‾] = 𝔼 [
1

𝑛
∑𝑗=1
𝑛  𝑋𝑗] =

𝑛𝔼[𝑋1]

𝑛
= 𝔼[𝑋1] = 𝜇0 

 Var(𝑋1) = 𝔼[Var(𝑋1 ∣ Θ)] + Var(𝔼[(𝑋1 ∣ Θ)] by law of total variation (cf. A.15) 
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form of the credibility premium: 

Theorem 3.10. Under Assumption 3.9, the general credibility estimator is as follows: 

�̂�𝑐 = 𝑍𝑋‾ + (1 − 𝑍)𝜇0                                               (3.10) 

Where 𝑋‾ =
1

𝑛
∑  𝑛
𝑗=1 𝑋𝑗 and 𝑍 is the credibility factor 

𝑍 =
𝑛

𝑛+𝜎2/𝜏2
                                                                 (3.11) 

Proof. The goal is to minimize the quadratic loss function (2.1) with respect to �̂�𝑐 

min
𝑃𝑐
�̂�∈𝐷
 𝔼 [(𝜇Θ − 𝑃�̂�)

2
] = min

𝑎0,𝑎𝑗(𝑗=1,…,𝑛)∈ℝ
 𝔼 [(𝜇Θ − 𝑎0 −∑  

𝑛

𝑗=1

 𝑎𝑗𝑋𝑗)

2

] 

Let 𝑎0̂ and �̂�𝑗;𝑗=1,…,𝑛 be the solution to the minimization problem, then: 

𝔼 [(𝜇Θ − �̂�0 −∑  

𝑛

𝑗=1

  �̂�𝑗𝑋𝑗)

2

] = min
𝑎0,𝑎𝑗(𝑗=1,…,𝑛)∈ℝ

 𝔼 [(𝜇Θ − 𝑎0 −∑  

𝑛

𝑗=1

 𝑎𝑗𝑋𝑗)

2

] 

Hence the target credibility premium has the form: 

�̂�𝑐 = �̂�0 + ∑  𝑛
𝑗=1 �̂�𝑗𝑋𝑗                                                (3.12) 

Losses in the collective have the same distribution. Thus, temporal order does not interfere with 

the calculations here and since there is only one best linear individual premium estimator, then: 

�̂�1 = �̂�2 = ⋯ = �̂�𝑛                                                    

Then it is possible to unify the notation for simplicity�̂�1 = �̂�2 = ⋯ = �̂�𝑛 = �̂�𝑛. Afterward, it 

will be easier to get rid of the summation operator 

�̂�𝑐 = �̂� + �̂�𝑋‾                                                              (3.13) 

Where what we are trying to obtain, �̂� and�̂�, are the solutions to the following 

𝔼 [(𝜇Θ − �̂� − �̂�𝑋‾)
2
] = min

𝑎,𝑏∈ℝ
 𝔼[(𝜇Θ − 𝑎 − 𝑏𝑋‾)

2]                    (3.14) 

There are two variables to minimize, thus, partial differentiation is to be carried out to minimize 

the expected loss. Starting with 𝑎 

𝜕

𝜕𝑎
𝔼[(𝜇Θ − 𝑎 − 𝑏𝑋)

2] = −2𝔼[(𝜇Θ − 𝑎 − 𝑏𝑋)]              (3.15) 

Equating (3.15) to zero 

−2𝔼[𝜇Θ − 𝑎 − 𝑏𝑋‾)] = 0

𝔼[𝜇Θ] − 𝔼[𝑎] − 𝑏𝔼[𝑋‾] = 0
𝜇0 − 𝑎 − 𝑏𝜇0 = 0

→ �̂� = (1 − 𝑏)𝜇0

                               (3.16) 

Substituting (3.16) in (3.14) 
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𝔼[(𝜇Θ − (1 − 𝑏)𝜇0 − 𝑏𝑋‾)
2] = 𝔼[(𝜇Θ − 𝜇0 + 𝑏𝜇0 − 𝑏𝑋‾)

2]

 = 𝔼 [((𝜇Θ − 𝜇0) − 𝑏(𝑋‾ − 𝜇0))
2
]

 = 𝔼[(𝜇Θ − 𝜇0)
2 − 2𝑏(𝜇Θ − 𝜇0)(𝜇0 − 𝑋‾) + 𝑏

2(𝜇0 − 𝑋‾)
2]

 = 𝔼[(𝜇Θ − 𝛾0)
2] − 2𝑏𝔼[(𝜇Θ − 𝜇0)(𝜇0 − 𝑋‾)] + 𝑏

2𝔼[(𝜇0 − 𝑋‾)
2],

 

Taking partial differentiation with respect to 𝑏 and equating to zero 

−2𝔼[(𝑋‾ − 𝔼[𝑋‾])((𝜇Θ − 𝔼[𝜇Θ])] + 2𝑏𝔼[(𝑋‾ − 𝔼[𝑋‾])
2] = 0

𝔼[(𝑋‾ − 𝔼[𝑋‾])((𝜇Θ − 𝔼[𝜇Θ])] = 𝑏𝔼[(𝑋‾ − 𝔼[𝑋‾])
2],

 

Spotting covariance and variance forms appearing (cf. A.3) yields the following: 

Cov(𝑋‾, 𝜇Θ) = 𝑏Var(𝑋‾) 

Solving for 𝑏 to get the minimizer 

�̂� =
Cov(𝑋‾ ,𝜇Θ)

Var(𝑋)
                                        (3.17) 

Given that the model Assumption 3.9 holds, and via the dependency of 𝑋 and Θ (cf. A.3) 

Cov(𝑋‾, 𝜇Θ) = Var(𝜇Θ) =: 𝜏
2                           (3.16) 

Var(𝑋‾) =
𝔼[𝜎Θ

2 ]

𝑛
+ Var(𝜇Θ) =:

𝜎2

𝑛
+ 𝜏2                      (3.17) 

The 𝑏 minimizer (3.14) is formed as follows 

�̂� =
𝜏2

𝜏2+
𝜎2

𝑛

=
𝑛

𝑛+
𝜎2

𝜏2

                                      (3.18) 

Finally, let 𝑍 = �̂� then plugging 𝑍 into the equation (3.16), it holds �̂� = (1 − Z) 𝜇0. 

Discussion: Credibility Premium Components 

The estimator 𝑋 that appears in the formula (3.10), represents the individual observed risks 

average. It can be said that 𝑋‾  is the component that speaks for past individual experience. 

This makes the word credibility very intuitive. How credible are the past experience 𝑋𝑗 s ? 

The element 𝑛 in the credibility factor is the number of years/data points. By the law of large 

numbers, the precision of individual premium estimation can be associated with the amount of 

data an insurer has at his or her disposal. As the amount of data increases, the credibility factor 

also increases. Ultimately, if the amount tends to approach infinity, then the credibility factor 

is 1. 

lim
𝑛→∞

 
𝜏2

𝜏2 +
𝜎2

𝑛

= 1 

This, of course, is an impossible scenario. But the underlying idea is that, the greater the 

knowledge of an individual's profile, the more an insurer tends to depend on individual 

experience, and the less reliance is placed on the collective experience. From another 

perspective, the insurer starts with the collective premium and adjusts toward individual 

experience, according to the quality of new individual experience data. 

It must be borne in mind that 𝜇Θ is a random variable. It contributes to the general credibility 

factor with its variation𝜏2. In Statistics, the term variance refers to how a random variable 

fluctuates about its mean. The mean of 𝜇Θ is 𝜇0 (see Assumption 3.9). Hence, the variance of 

𝜇Θ represents how scattered the individual premium is from the collective premium𝜇0. 
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Attending to the credibility factor, we take two extreme cases of 𝜏2 defined as in equation 

(3.16): 

lim
𝜏2→∞

 
𝑛

𝑛+
𝜎2

𝜏2

= 1        (3.19)    

lim
𝜏2→0

 
𝑛

𝑛+
𝜎2

𝜏2

= 0                                               (3.20) 

An insight into the heterogeneity of the collective can be gained by looking at𝜏2. If an 

individual experience is absolutely different from the collective, as in equation (3.19), then, 

there are no grounds for including the collective premium in that particular credibility premium 

estimation procedure and vice versa. 

𝑋𝑗 ∣ Θ Are the data within a risk profile Θ. Var(𝑋𝑗 ∣ Θ) measures the volatility of data within a 

risk profile and, if its expected value is taken, the result is𝔼[Var(𝑋𝑗 ∣ Θ)] = 𝜎
2. It is a 

component of the credibility factor that measures the mean variation of risks within a risk 

profile. In other words, lower 𝜎2 means that the within risks are 'close' to each other and this 

increases the credibility of these data. Hence, the smaller the 𝜎2 the higher the credibility 

factor𝑍, since quality within risks data means quality individual experience data. 

The previous discussion of credibility premium components presents an understanding of what 

Bühlmann and Gisler [3] (p. 58) offered as their remarks on Theorem 3.10. 

 

Figure 3.1: A recap of Bayes Premium �̂�𝛩
∗  Defined as in Theorem 3.7 and Credibility Premium 

𝑃𝑐  

From Theorem 3.10. Range (X⃗⃗⃗) is the set of all past observed losses and Range (X⃗⃗⃗) ⊃

Range(X⃗⃗⃗ ∣ Θ) is the subset of losses produced by some risk profileΘ. The above Ven diagram 

shows how they map on to the elements μ̂Θ
∗ ∈ A and𝑃𝑐 ∈ D. 

Remark 3.11. Restricting the 'search' of individual premium estimators to those that have linear 

observations ensures that the credibility premium is in between 𝑋‾  and𝜇0. That is, it always falls 

into one of two cases: 

𝑋‾ ≤  credibility premium ≤ 𝜇0, if 𝑋‾ ≤ 𝜇0

𝑋‾ ≥  credibility premium ≥ 𝜇0, if 𝑋‾ ≥ 𝜇0
 

The equivalence principle is assumed in the general/simple credibility model. However, the 

same concepts can be extrapolated to other premium principles. In the following sections, the 

same analogy is applied to derive the credibility premium under the exponential principle. Of 
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course, different assumptions, appropriate to the task, are to be imposed in the next subsection. 

The Credibility Premium under the Exponential Principle 

All the theorems and definitions used throughout this paper now feed into the formation of the 

credibility premium for the exponential principle. Again, the goal is to find the credibility 

exponential premium �̃�𝑐 which is the estimator for 𝜇Θ (see Definition 3.5) that minimizes the 

expected exponential loss function (2.7). The pool of estimators �̂̃�𝑐 are chosen from those that 

have linear observationsD̃ = {�̂̃�𝑐: �̂̃�𝑐 = 𝑎0 + ∑  𝑛
𝑗=1  𝑎𝑗𝑋𝑗, 𝑎0, 𝑎𝑗(𝑗=1,…,𝑛) ∈ ℝ}. 

min
�̃�𝑐
 𝔼 [(𝑒𝛼�̃̃�Θ − 𝑒𝛼𝑃

⇀

𝑐
𝑐
)
2

] = 𝔼 [(𝑒𝛼�̃�𝜔 − 𝑒𝛼�̃�𝑐
𝑐
)
2
]               (3.21) 

However, this attempt has been found to be unsuccessful (see the full presentation of the 

attempt in Appendix A.4.1) due to the complexity encountered during derivation. The 

following represents another attempt. It should first be noted that Bühlmann and Gisler, [3] 

(p.65) allowed the past individual experience data used in estimation to be transformations of 

observed losses, instead of explicitly using𝑋𝑗(𝑗 = 1,2, … , 𝑛). Wen et al. [12] and Wen et al. 

[13] proposed the following lemma and assumed the appropriate related assumptions: they 

suggested that the credibility estimator for the conditional moment generating function can be 

used to derive the credibility exponential premium. 

Assumption 3.12. 

 Given Θ = 𝜃, the transformations of risks 𝑒𝛼𝑋𝑗 's are iid with distribution  function 𝐹𝑋𝑗∣Θ 

 Assumption 3.1 

 𝛾Θ = 𝔼[𝑒
𝛼𝑋1 ∣ Θ] 

 𝛾0 = 𝔼[𝑒
𝛼𝑋1] 

 𝜎𝛾Θ
2 = Var(𝑒𝛼𝑋1 ∣ Θ) 

 𝜏𝛾
2 = Cov(𝑌‾, 𝛾𝜃) = Var(𝛾𝜃) 

Lemma 3.13. Under Assumption 3.12, the credibility estimator for 𝛾𝜃 using quadratic loss 

function (2.1) is 

�̃�𝛾
𝑐 = 𝑍𝛾𝑌‾ + (1 − 𝑍𝛾)𝛾0 

Where 𝑌‾ =
∑  𝑛
𝑗=1  𝑒

𝛼𝑋𝑗

𝑛
 as 𝑌𝑗 = 𝑒

𝛼𝑋𝑗 and 𝑍𝛾 =
𝑛

𝑛+𝜎𝛾
2/𝜏𝛾

2 is the credibility factor. 

Proof. Performing the following minimization using the quadratic loss function (2.1) to find 

𝑃𝛾
𝑐 the best estimator in the set of estimators �̂�𝛾

𝑐 that are linear in𝑌𝑗 = 𝑒
𝛼𝑋𝑗, that is, the setC̃ =

{�̂�𝛾
𝑐: �̂�𝛾

𝑐 = 𝑎0 + ∑  𝑛
𝑗=1  𝑎𝑗𝑌𝑗}. 

𝑃𝛾
𝑐 Is the solution for 

min
�̂�𝛾∈𝐂

 𝔼 [(𝛾⊖ − �̂�𝛾
𝑐)
2
] = 𝔼 [(𝛾Θ − 𝑃𝛾

𝑐)
2
]                             (3.22) 

And it has to be of the form 

𝑃𝛾
𝑐 = �̂�0 +∑  

𝑛

𝑗=1

�̂�𝑗𝑌𝑗 

Where �̂�0, �̂�𝑗 solves the minimization problem 
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min
𝑎0,𝑎𝐽(𝑗=1,…,𝑛)∈ℝ

 𝔼 [(𝛾Θ − 𝑎0 −∑  

𝑛

𝑗=1

 𝑎𝑗𝑌𝑗)

2

] = 𝔼 [(𝛾Θ − �̂�0 −∑  

𝑛

𝑗=1

  �̂�𝑗𝑌𝑗)

2

] 

The same argument is presented in the proof of Theorem 3.10. Since 𝑌𝑗
′𝑠 are identically 

distributed and through the uniqueness of the credibility estimator: 

�̂�1 = �̂�2 = ⋯ = �̂�𝑛 

It should now be rewritten: 

𝑃𝛾
𝑐 = �̂� + �̂�𝑌‾                                          (3.23) 

Where 

𝑌‾ =
∑  𝑛
𝑗=1   𝑒

𝛼𝑋𝑗

𝑛
 

For �̂� and �̂� are the solutions to 

𝔼 [(𝛾Θ − �̂� − �̂�𝑌‾)
2
] = min

𝑎,𝑏∈ℝ
 𝔼[(𝛾Θ − 𝑎 − 𝑏𝑌‾)

2]                  (3.24) 

There are two variables to minimize, thus, partial differentiation is to be carried out to minimize 

the expected loss. Starting with 𝑎 

𝜕

𝜕𝑎
𝔼[(𝛾Θ − 𝑎 − 𝑏𝑌‾)

2] =
𝜕

𝜕𝑎
𝔼[(𝛾Θ

2 − 2𝛾Θ(𝑎 + 𝑏𝑌‾) + (𝑎 + 𝑏𝑌‾)
2)]

 =
𝜕

𝜕𝑎
(𝔼[𝛾⊖

2 ] − 2𝔼[𝛾Θ](𝑎 + 𝑏𝑌‾) + 𝔼[𝑎
2 + 2𝑎𝑏𝑌‾ + 𝑏2𝑌‾ 2])

 =
𝜕

𝜕𝑎
(𝔼[𝛾Θ

2] − 2𝔼[𝛾Θ](𝑎 + 𝑏𝑌‾) + 𝑎
2 + 2𝑎𝑏𝔼[𝑌‾] + 𝔼[𝑏2𝑌‾ 2])

 = −2𝔼[𝛾Θ] + 2𝑎 + 2𝑏𝔼[𝑌]                                                (3.25)  

       

After equating (3.25) to zero, we get: 

𝑎 = 𝔼[𝛾𝜃] − 𝑏𝔼[𝑌]
𝑎 = 𝛾0 − 𝑏𝛾0

→ �̂� = (1 − 𝑏)𝛾0

                                  (3.26) 

Now, substituting equation (3.26) in (3.24) 

𝔼[(𝛾Θ − 𝛾0) − 𝑏(𝑌‾ − 𝛾0))
2
] = 𝔼[(𝛾Θ − 𝛾0)

2 − 2𝑏(𝛾𝜃 − 𝛾0)(𝛾0 − 𝑌‾) + 𝑏
2(𝛾0 − 𝑌‾)

2]

 = 𝔼[(𝛾Θ − 𝛾0)
2] − 2𝑏𝔼[(𝛾𝜃 − 𝛾0)(𝛾0 − 𝑌‾)] + 𝑏

2𝔼[(𝛾0 − 𝑌‾
 

Then taking partial differentiation with respect to 𝑏 and equating to zero, we get: 

−2𝔼[(𝛾Θ − 𝛾0)(𝛾0 − 𝑌‾)] + 2𝑏𝔼[(𝛾0 − 𝑌‾)
2] = 0

𝔼[(𝛾Θ − 𝛾0)(𝛾0 − 𝑌‾)] = 𝑏𝔼[(𝛾0 − 𝑌‾)
2]

 

Spotting covariance and variance forms appearing (cf. A.3), we get: 

Cov(𝑌‾, 𝛾Θ) = 𝑏Var(𝑌‾) 

Solving for 𝑏 to get the minimiser 

�̂� =
Cov(𝑌‾ , 𝛾Θ)

Var(𝑌‾)
 

Given the model Assumption 3.12 holds, and by the dependency of 𝑌1 and Θ 
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Cov(𝑌‾, 𝛾Θ) = Var(𝛾Θ) =: 𝜏𝛾
2                        (3.26) 

Var(𝑌‾) =
𝔼[𝜎𝛾Θ

2 ]

𝑛
+ Var(𝛾Θ) =:

𝜎𝛾
2

𝑛
+ 𝜏𝛾

2               (3.27) 

The 𝑏 minimizer (3.24) is reformed as follows: 

�̂� =
𝜏𝛾
2

𝜏𝛾
2+

𝜎𝛾
2

𝑛

=
𝑛

𝑛+
𝜎𝛾
2

𝜏𝛾
2

                                           (3.27) 

Finally, let 𝑍𝛾 = �̂� then plugging 𝑍𝛾 in equation (3.26), it holds�̂� = (1 − 𝑍𝛾)𝛾0. Now looking 

to equation (3.23), the credibility estimator is written: 

𝑃𝛾
𝑐 = 𝑍𝛾𝑌‾ + (1 − 𝑍𝛾)𝛾0                                  (3.27) 

The form of the minimization problem in Wen et al. [12] and Wen et al. [13] used for finding 

the credibility exponential premium �̃�𝑐 can be traced back 

As being a minimization across the individual exponential premium estimators �̂̃�𝑐 that are ln-

linear in𝑒𝛼𝑋𝑗. The set is defined: �̃� = {�̂̃�𝑐: �̂̃�𝑐 =
1

𝛼
ln (𝑎0 + ∑𝑗=1

𝑛  𝑎𝑗𝑒
𝛼𝑋𝑗 , 𝑎0, 𝑎𝑗(𝑗=1,…,𝑛) ∈ ℝ)}. 

Now, it is written, using the exponential loss function (2.7): 

min
�̃�𝑐∈𝐖

 𝔼 [(𝑒𝛼�̃�Θ − 𝑒𝛼⋅𝑃‾̂
𝑐
)
2

] = 𝔼 [(𝑒𝛼�̃�Θ − 𝑒𝛼⋅�̃�𝑐)
2
]             (3.28)              

It can be seen that the minimization problem on the left-hand side of Lemma 3.13 is equivalent 

to the following: 

min
𝑎0,𝑎𝑗(𝑗=1,…,𝑛)∈ℝ

 𝔼 [(𝛾𝜃 − 𝑎0 −∑  

𝑛

𝑗=1

 𝑎𝑗𝑒
𝛼𝑋𝑗)

2

]

= min
𝑎0,𝑎𝑗(𝑗=1,…,𝑛)∈ℝ

 𝔼 [(𝑒𝛼𝜇�̃�Θ − 𝑒𝛼⋅
1
𝛼
ln (𝑎0+∑  𝑛

𝑗=1  𝑎𝑗𝑒
𝛼𝑋𝑗))

2

] 

Then (3.28) and (3.22) are equivalent 

min
�̂�𝜎∈ℂ

 𝔼 [(𝛾Θ − �̂�𝛾
𝑐)
2
] = min

�̂�𝑐∈𝐖
 𝔼 [(𝑒𝛼�̃�Θ − 𝑒𝛼⋅�̂�

𝑐
)
2
] 

The main objective is to find the credibility estimator for the individual exponential 

premium𝜇Θ, as defined in Theorem 3.8, not for𝛾Θ. Thus, it is written: 

𝔼 [(𝛾Θ − 𝑃𝛾
𝑐)
2
] = 𝔼 [(𝑒𝛼�̃�Θ − 𝑒𝛼−�̃�𝑐)

2
] 

Notice 

𝛾Θ = 𝑒
𝛼�̃�Θ ⟺ 𝜇Θ =

1

𝛼
ln 𝛾Θ 

Then 

𝑃𝛾
𝑐 = 𝑒𝛼�̃�𝑐 ⟺ �̃�𝑐 =

1

𝛼
ln 𝑃𝛾

𝑐 

This concludes Wen et al.'s [12] proof of the following theorem:  

Theorem 3.14. Under Assumption 3.12, and defining 𝑃𝛾
𝑐 and 𝑍𝛾 as in Lemma 3.13, the 

credibility premium under the exponential principle (cf. Section 2.1) is: 
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�̃�𝑐 =
1

𝛼
ln 𝑃𝛾

𝑐 =
1

𝛼
ln [𝑍𝛾𝑌 + (1 − 𝑍𝛾)𝛾0] 

Where 𝑌‾ =
∑  𝑛
𝑗=1  𝑒

𝛼𝑋𝑗

𝑛
 as 𝑌𝑗 = 𝑒

𝛼𝑋𝑗 and 𝑍𝛾 =
𝑛

𝑛+𝜎𝛾
2/𝜏𝛾

2 is the credibility factor. 

Example 3.15. Company XYZ sells house-fire insurance policies in Manchester. The 

occurrence of house fires is associated with whether or not a house has a working fire-alarm 

system. The actuary at XYZ believes that the random variable Θ representing the proportion of 

houses in Manchester that have no working fire alarm system in a given year follows a Beta 

distribution (see Definition A.7) with the following density function 

𝑓Θ(𝜃) =
1

 B(2,2)
𝜃2−1(1 − 𝜃)2−1, 0 ≤ 𝜃 ≤ 1 

The number of house fires occurring during year 𝑗 in Manchester 𝑁𝑗 ∣ Θ = 𝜃(𝑗 = 1,2, … ) 

follows a Binomial distribution (see Definition A.6) with parameters 𝑚 = 1 and𝑝 = 𝜃. A total 

number of eight covered houses burned in the last 12 years. XYZ's actuary wants to know the 

expected number of house fires in the coming year, that is, the 13th year. 

Model characteristics and notations 

 Let 𝑁𝑗 be the identically-distributed observed number of house fires in year𝑗. 

 Let �̂�Θ = 𝔼[𝜇Θ ∣ 𝑁1, … , 𝑁12] be the Bayes equivalence premium as in Theorem 3.7, 

where 𝜇Θ is the individual equivalence premium as in Definition 3.4. Set 𝜇0 = 𝔼[𝑁𝑗] 

as in equation (3.1). Also, let𝜏2 = Var(𝜇Θ). 

 Let �̂�Θ =
1

𝛼
ln 𝔼[𝑒𝛼�̃�Θ ∣ 𝑁1, … , 𝑁12] be the Bayes exponential premium as in Theorem 

3.8 where �̃�Θ is the individual exponential premium as in Proposition 3.5. Set 𝜇0 =
1

𝛼
ln 𝔼[𝑒𝛼𝑁𝑗] as in equation (3.2). Also, let 𝛾Θ = 𝔼[𝑒

𝛼𝑁𝑗 ∣ Θ] and𝜏𝛾
2 = Var(𝛾Θ), then 

define 𝛾0 = 𝔼[𝑒
𝛼𝑁𝑗] as in Assumption 3.12. 

 Beta and Binomial are conjugate priors (see Proposition A.8) as listed in Heilmann [7] 

or in Buhlmann and Gisler, [3] (p.33). This means that for 𝑛𝑗  the number of observed 

claims in year 𝑗 and 𝑚 is the parameter of 𝑁𝑗 ∣ Θ ∼ Binomial(𝑚, Θ), then the following 

random variables are distributed as: a priori  Θ ∼ Beta(𝑎, 𝑏) a posteriori 

Θ ∣ 𝑁𝑗 ∼ Beta(𝑎
′ = 𝑎 + 𝑛𝑗 , 𝑏

′ = 𝑏 +𝑚 − 𝑛𝑗) 

𝔼[Θ] =
𝑎

𝑎 + 𝑏
=
1

2
, for, 𝑎 = 𝑏 = 2 

Var(Θ) =
𝑎𝑏

(1 + 𝑎 + 𝑏)(𝑎 + 𝑏)2
=

4

(5)(16)
= 0.05 

Collective perspective: Let us find overall 'averages' for the number of house fires in 

Manchester for the 13th year, regardless of the condition of fire alarms in the city's houses, 

under each of the following principles: 

 Equivalence principle (3.1) 

𝜇0 = 𝔼[𝑁13] = 𝔼[𝔼[𝑁13 ∣ Θ]] = 𝔼[1 ⋅ Θ] = 1 ⋅ 0.5 = 0.5 
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 Exponential principle (3.2) 

𝜇0 =
1

𝛼
ln 𝔼[𝑒𝛼𝑁13] =

1

𝛼
ln 𝔼[𝑒𝛼𝜇Θ] by iterative 7.Property , 𝛼 > 0 

After viewing (Definitions A. 3 and A.6), take 

�̃�Θ =
1

𝛼
ln 𝔼[𝑒𝛼𝑁13 ∣ Θ]

 =
1

𝛼
ln 𝑚𝑁13∣Θ(𝛼),𝑚𝑁13∣Θ is the mgf of 𝑁13 ∣ Θ

 =
1

𝛼
ln (1 − Θ + Θ𝑒𝛼), 𝛼 > 0

 

Now 

𝜇0 =
1

𝛼
ln 𝔼 [𝑒𝛼⋅

1
𝛼
ln (1−Θ+Θ𝑒𝛼)]

 =
1

𝛼
ln 𝔼[(1 − Θ + Θ𝑒𝛼)]

 =
1

𝛼
ln ((1 − 𝔼[Θ] + 𝑒𝛼𝔼[Θ]))

 =
1

𝛼
ln (0.5(1 + 𝑒𝛼)), 𝛼 > 0

 

Bayesian perspective: To recap from Probability Theory, the sum of Binomial random 

variables, with the same probability 𝑝 of success, is a Binomial random variable with the 

'number of experiments' parameter being the sum of each Binomial's number of experiments. 

Since there are 12 years and the claims for each year 𝑁𝑗 ∣ Θ ∼ Binomial(1, Θ), then claims 

over the sum of 12 years are: (𝑁1 +⋯+𝑁12)|Θ = 𝑆|Θ ∼ Binomial(12, Θ). 
A priori  Θ ∼ Beta(2,2) a posteriori  Θ ∣ 𝑆 ∼ Beta(𝑎′ = 2 + 8, 𝑏′ = 2 + 12 − 8) then 

Θ|𝑁1, … , 𝑁12 ∼ Θ|𝑆 ∼ Beta(𝑎
′ = 10, 𝑏′ = 6)

𝔼[Θ ∣ 𝑆] =
𝑎′

𝑎′ + 𝑏′
=

10

10 + 6
=
5

8

 

 Bayes estimator for the expected number of house fires under the Equivalence principle 

(see Theorem 3.7) 

�̂�⊖
∗ = 𝔼[𝜇Θ ∣ 𝑁1, … , 𝑁12] = 𝔼[1 ⋅ Θ ∣ 𝑁1, … , 𝑁12] = 𝔼[Θ ∣ 𝑆] =

5

8
 

 Bayes estimator for the expected number of house fires under the exponential principle 

(see Theorem 3.8) 

�̂�Θ
∗  =

1

𝛼
ln 𝔼[𝑒𝛼�̃�Θ ∣ 𝑁1, … , 𝑁12], 𝛼 > 0

 =
1

𝛼
ln 𝔼 [𝑒𝛼⋅

1
𝛼
ln (1−Θ+Θc

𝛼)

| 𝑁1, … , 𝑁12]

 =
1

𝛼
ln 𝔼[(1 − Θ + Θ𝑒𝛼) ∣ 𝑁1, … , 𝑁12]

 

Then 

http://www.ajpo.org/
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�̂�⊖ =
1

𝛼
ln 𝔼[(1 − Θ + Θ𝑒𝛼) ∣ 𝑆], 𝛼 > 0

 =
1

𝛼
ln (

3

8
+
5

8
𝑒𝛼)

 

Credibility perspective: let the average observed claims be 

𝑁‾ =
∑  12
𝑗=1  𝑁𝑗

12
=
8

12
=
2

3
 

Further find 

𝜎2 = 𝔼[Var(𝑁13 ∣ Θ)]

 = 𝔼[1 ⋅ Θ(1 − Θ)]

 = 𝔼[Θ] − 𝔼[Θ2]

 = 0.5 − (0.05 + 0.52) = 0.2

 

 Credibility estimator for expected number of house fires under the equivalence 

principle 𝑃𝑐 (see Theorem 3.10) 

Let 𝑍 be the credibility factor for the equivalence principle model 

𝑍 =
8

8 +
𝜎2

𝜏2

 

Where 

𝜏2 = Var(𝔼[𝑁13 ∣ Θ]) = Var(1 ⋅ Θ) = 0.05 

Then 

𝑍 =
8

8 +
1
6

= 0.978 

𝑃𝑐  = 𝑍𝑁 + (1 − 𝑍)𝜇0

 = 0.978 ⋅
2

3
+ (1 − 0.978) ⋅ 0.5

 = 0.663

 

 Credibility estimator for the expected number of house fires under the exponential 

principle �̃�𝑐s (see Theorem 3.14 and Lemma 3.13) 

Let 𝑍𝛾 be the credibility factor under the exponential principle model Find 

𝛾Θ = 𝔼[𝑒
𝛼𝑁𝑗 ∣ Θ] = (1 − Θ + Θ𝑒𝛼) 

And 

𝜏𝛾
2 = Var(𝛾Θ) = (𝑒

𝛼 − 1)2Var(Θ)) = (𝑒𝛼 − 1)2 ⋅ 0.05 
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𝜎𝛾
2 = 𝔼[Var(𝛾Θ)]

 = 𝔼[𝔼[𝑒2𝛼𝑁𝑗 ∣ Θ] − (𝔼[𝑒𝛼𝑁𝑗 ∣ Θ])2]

 = 𝔼[(1 − Θ + Θ𝑒2𝛼) − (1 − Θ + Θ𝑒𝛼)2]

 = 𝔼[(1 − Θ + Θ𝑒2𝛼) − (1 − 2Θ + Θ2 + 2Θ𝑒𝛼 − 2Θ2𝑒𝛼 + Θ2𝑒2𝛼)]

 = 𝔼[1 − Θ + Θ𝑒2𝛼 − 1 + 2Θ − Θ2 − 2Θ𝑒𝛼 + 2Θ2𝑒𝛼 − Θ2𝑒2𝛼]

 = 𝔼[Θ + Θ𝑒2𝛼 − Θ2𝑒2𝛼 − 2Θ𝑒𝛼 + 2Θ2𝑒𝛼 − Θ2]

 = 𝔼[Θ] + 𝔼[Θ𝑒2𝛼] − 𝔼[Θ2𝑒2𝛼] − 2𝔼[Θ𝑒𝛼] + 2𝔼[Θ2𝑒𝛼] − 𝔼[Θ2]

 = 0.5 + 0.5𝑒2𝛼 − 0.3𝑒2𝛼 − 2(0.5𝑒𝛼) + 2(0.3𝑒𝛼) − 0.3

 = 0.5 + (0.5 − 0.3)𝑒2𝛼 − 𝑒𝛼 + 0.6𝑒𝛼 − 0.3

 = 0.5 − 0.3 + 0.2𝑒2𝛼 − 0.4𝑒𝛼

 = 0.2 + 0.2𝑒2𝛼 − 0.4𝑒𝛼                                                                 (3.29)

 

Then 

𝛾0 = 𝔼[𝑒
𝛼𝑁𝑗] = 𝔼 [𝔼[𝑒𝛼𝑁𝑗 ∣ Θ]] = 𝔼[(1 − Θ + Θ𝑒𝛼)] = 0.5 + 0.5𝑒𝛼 

 

Consequently 

𝑍𝛾 =
𝜏𝛾
2

𝜏𝛾2 +
𝜎𝛾2

𝑛

 =
(𝑒𝛼 − 1)2 ⋅ 0.05

(𝑒𝛼 − 1)2 ⋅ 0.05 + 0.025 + 0.025𝑒2𝛼 − 0.05𝑒𝛼

𝑃𝛾
𝑐  = 𝑍𝛾𝑁 + (1 − 𝑍𝛾)𝛾0

 = 𝑍𝛾
2

3
+ (1 − 𝑍𝛾)(0.5 + 0.5𝑒

𝛼)

 

Finally: 

�̃�𝑐 =
1

𝛼
ln (𝑍𝛾

2

3
+ 0.5(1 − 𝑍𝛾)(1 + 𝑒

𝛼)) 

For𝛼 > 0, the exponential premium principle always seems to produce an outcome that is 

larger than that produced by the equivalence principle. This aligns with the Safety loading 

Property 4. Discussed earlier. 

CONCLUSION AND RECOMMENDATIONS 

Conclusion  

This paper has gradually developed tools for identifying connections between the exponential 

premium and credibility theory, borrowing methods from other theories, such as risk theory 

and decision theory. More detailed proofs from a range of relevant resources have also been 

identified and presented. The thinking behind the structure of the paper was to start Chapter 1 

by introducing a clearer picture of data sorting and demonstrating that a lack of harmony among 

data is the reason for considering experience rating. The historical background provided, which 

has been summarized from Goulet [5], covered the rise of experience rating procedures in 

insurance practice, with credibility theory giving one such procedure. All examples and graphs 

in this paper represent the author’s efforts to try to convey ideas drawn from a review of the 

related literature, as understood by the author. 

Due to the random nature of individual premiums, discussed in Chapter 3, Bayesian statistics 

were applied in order to estimate the Bayes premium under the equivalence principle, adding 

more intermediate steps in the proof of Theorem 3.7, as well as in the proof of the exponential 
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principle in Theorem 3.8. A broader point of view on rate-making, represented by collective 

premiums (3.1) and (3.2) was also introduced. When introducing both collective and individual 

premiums, the drawbacks of each were intentionally noted, to render the idea of combining 

both in pricing more intuitively sound. More intermediate steps and mathematical clarifications 

have also been added to the proof of the credibility premium under the equivalence principle 

in Theorem 3.10, compared with the same proof as it appears in Bühlmann and Gisler [3], 

(p.56).  

Recommendations 

An attempt was made to derive an exponential credibility estimator that is linear in 

observations. However, this led to a differentiation task requiring the interchange of 

differentiation and expectation operators (see Appendix A.4.1), a gap that was not addressed 

before in the related papers.  It is possible, even with its complexity, for an interested researcher 

to fill this gap and continue the derivation in (Appendix A.4.1), using partial differentiation. 
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Appendix A 

In what follows, we consider a Probability space(Ω, 𝐹, 𝑃). 

A. 1 Probabilities and distributions 

Definition A.1. In what follows, we consider a Probability space 

𝐹𝑋(𝑥) = ℙ(𝑋 ≤ 𝑥) for 𝑥 ∈ ℝ                          (1.1) 

Definition A.2. For any continuous random variable 𝑋 that has a cdf𝐹𝑋, and for the integrable 

function𝑓𝑋: ℝ → [0,∞), the probability density function (pdf) of 𝑋 can be expressed as: 

𝑓𝑋(𝑥) = 𝐹𝑋
′ (𝑥), ∀𝑥 ∈ ℝ                                    (1.2) 

 

And the following relationship also holds: 

𝐹𝑋(𝑥) = ∫  
𝑥

−∞

𝐹𝑋
′ (𝑡)𝑑𝑡 = ∫  

𝑥

−∞

𝑓𝑋(𝑡)𝑑𝑡, ∀𝑥 ∈ ℝ 

 

Since lim
𝑥→+∞

 𝐹𝑋(𝑥) = 1 it holds that: 

∫  
∞

−∞
𝑓𝑋(𝑥)𝑑𝑥 = 1                                             (1.3) 

 

Definition A.3. (Moment generating function) For any random variable 𝑋 its 

 

Moment generating function 𝑚𝑋: ℝ → (0,∞] is defined as: 

𝑚𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋] for t ∈ ℝ 

Definition A.4. For any random variables 𝑋, 𝑌 with the joint distribution function𝑓𝑋,𝑌, and 

𝑓𝑋 , 𝑓𝑌 > 0 are the marginal distribution functions of 𝑋 and 𝑌 respectively. The conditional 

distribution function of 𝑋 given 𝑌 = 𝑦 is 

𝑓𝑋∣𝑌(𝑥 ∣ 𝑦) =
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
 

Theorem A.5. (Bayes Theorem) For any random variables 𝑋, 𝑌 with the joint distribution 

function𝑓𝑋,𝑌, and 𝑓𝑋 > 0, 𝑓𝑌 > 0 are the marginal distribution functions of 𝑋 and 𝑌 

respectively. The conditional distribution function of 𝑌 given 𝑋 = 𝑥 is𝑓𝑌∣𝑋=𝑥, then 

𝑓𝑌∣𝑋(𝑦 ∣ 𝑥) =
𝑓𝑋∣𝑌(𝑥 ∣ 𝑦)𝑓𝑌(𝑦)

𝑓𝑋(𝑥)
 

Definition A.6. (Binomial distribution) If a discrete random variable 𝑁 has a Binomial 

distribution with parameters 𝑚 ∈ ℕ and𝑝 ∈ [0,1], where 𝑚 represents the number of 

independent Bernoulli experiments and 𝑝 is the probability of a successful experiment 

occurring, then its probability mass function 𝑓𝑁 is 

𝑓𝑁(𝑘) = (
𝑚

𝑘
)𝑝𝑘(1 − 𝑝)𝑚−𝑘, 𝑘 = 0,1…𝑚 

And its moment-generating function 𝑚𝑁 is expressed as 
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𝑚𝑁(𝑡) = ∑  

𝑚

𝑘=0

  𝑒𝑡𝑘 ⋅ 𝑓𝑁(𝑘)

 = ∑  

𝑚

𝑘=0

  𝑒𝑡𝑘 ⋅ (
𝑚

𝑘
)𝑝𝑘(1 − 𝑝)𝑚−𝑘

 = ∑  

𝑚

𝑘=0

  (
𝑚

𝑘
) (𝑒𝑡𝑝)𝑘(1 − 𝑝)𝑚−𝑘, that is a binomial series 

 = [1 − 𝑝 + 𝑝𝑒𝑡]𝑚

 

Furthermore, its mean and variance are 𝔼[𝑁] = 𝑚𝑝, Var(𝑁) = 𝑚𝑝(1 − 𝑝) 

Definition A.7. (Beta distribution) If a continuous random variable 𝑋 has a Beta distribution 

with parameters 𝑎 > 0 and𝑏 > 0. Then its probability density function 𝑓𝑋 is 

𝑓𝑋(𝑥) =
1

𝐵(𝑎, 𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1, 0 ≤ 𝑥 ≤ 1 

For 

𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏)
 

Where the Gamma functionΓ(.)𝑖𝑠𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑎𝑠 

Γ(𝑥) = ∫  
∞

0

𝑒−𝑡𝑡𝑥−1𝑑𝑡, 𝑥 > 0 

And its mean and variance are 

𝔼[𝑋] =
𝑎

𝑎 + 𝑏
, Var(𝑋) =

𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
 

Proposition A.8. (Beta-Binomial model) If the prior distribution 𝑓Θ(𝜃) follows a Beta 

distribution with parameters 𝑎 > 0 and 𝑏 > 0 and the likelihood function's 𝑓𝑋∣Θ(𝑘) distribution 

is a Binomial distribution with parameters 𝑚 and𝜃, then the posterior distribution 𝑓Θ∣𝑋(𝜃 ∣ 𝑘) 
is Beta with parameters 𝑎′ = 𝑎 + 𝑘 and 𝑏′ = 𝑏 + 𝑚 − 𝑘. 

Proof. To begin with, the prior of Θ is 

𝑓Θ(𝜃) =
1

𝐵(𝑎, 𝑏)
𝜃𝑎−1(1 − 𝜃)𝑏−1, 0 ≤ 𝜃 ≤ 1 

Then 

𝑓𝑋∣Θ(𝑘 ∣ 𝜃) = (
𝑚

𝑘
)𝜃𝑘(1 − 𝜃)𝑚−𝑘, 𝑘 = 0,1…𝑚 

Now, using Bayes Theorem A. 5 

𝑓Θ∣𝑋(𝜃 ∣ 𝑘) =
𝑓𝑋∣Θ(𝑘 ∣ 𝜃) ⋅ 𝑓Θ(𝜃)

𝑓𝑋(𝑘)

 = (
𝑚

𝑘
)𝜃𝑘(1 − 𝜃)𝑚−𝑘 ⋅

1

𝐵(𝑎, 𝑏)
𝜃𝑎−1(1 − 𝜃)𝑏−1

1

𝑓𝑋(𝑘)

 

Gather constants in one notation 𝑐 

𝑓Θ∣𝑋(𝜃 ∣ 𝑘) = 𝑐 ⋅ 𝜃
𝑎+𝑘−1(1 − 𝜃)𝑏+𝑚−𝑘−1, 0 ≤ 𝜃 ≤ 1 
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It is possible to recognize the form of 𝑓Θ∣𝑋(𝜃 ∣ 𝑘) as a form of a Beta distribution with 

parameters 𝑎 + 𝑘 and𝑏 + 𝑚 − 𝑘. 

A. 2 Expectation and its properties 

Definition A.9. (Expectation) 

(i) For any continuous random variable 𝑋 with probability density function𝑓𝑋, the expectation 

of 𝑋 is 

𝔼[𝑋] = ∫  
∞

−∞

𝑥 ⋅ 𝑓𝑋(𝑥)𝑑𝑥 

(ii) For any discrete random variable 𝑋 with probability mass function 𝑓𝑋 the expectation of 𝑋 

is 

𝔼[𝑋] =∑  

𝑥

𝑥 ⋅ 𝑓𝑋(𝑥) 

Definition A.10. (Conditional Expectation) 

(i) For any continuous random variables 𝑋, 𝑌 with conditional probability density function𝑓𝑋∣𝑌, 

the conditional expectation of 𝑋 given 𝑌 = 𝑦 is 

𝔼[𝑋 ∣ 𝑌 = 𝑦] = ∫  
∞

−∞

𝑥 ⋅ 𝑓𝑋∣𝑌=𝑦(𝑥 ∣ 𝑦)𝑑𝑥 

(ii) For any discrete random variables 𝑋, 𝑌 with conditional probability mass function 𝑓𝑋∣𝑌 the 

conditional expectation of 𝑋 given 𝑌 = 𝑦 is 

𝔼[𝑋 ∣ 𝑌 = 𝑦] =∑  

𝑥

𝑥 ⋅ 𝑓𝑋∣𝑌=𝑦(𝑥 ∣ 𝑦) 

Proposition A.11.  

(i) For any 𝑋 and 𝑌 two random variables the following linearity property holds: 

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌] 

For any two functions 𝑔:ℝ → ℝ and ℎ:ℝ → ℝ it also holds 

𝔼[𝑔(𝑋) + ℎ(𝑌)] = 𝔼[𝑔(𝑋)] + 𝔼[ℎ(𝑌)] 

(ii) For independent random variables 𝑋 and𝑌, we have 

−𝔼[𝑋𝑌] = 𝔼[𝑋]𝔼[𝑌] Simalarly, for any two functions 𝑔:ℝ → ℝ and ℎ:ℝ → ℝ it also 

holds𝔼[𝑔(𝑋)ℎ(𝑌)] = 𝔼[𝑔(𝑋)]𝔼[ℎ(𝑌)] 
−𝔼[𝑋 ∣ 𝑌] = 𝔼[𝑋]. The same notion applies for any function 𝑔:ℝ → ℝ it holds 𝔼[𝑔(𝑋) ∣ 𝑌] =
𝔼[𝑔(𝑋)] 

The property of linearity is used in this paper as a conditional expectation operator and it also 

holds. 

(iii) For any 𝑋, 𝑌 and 𝑍 random variables the following linearity property holds 

𝔼[𝑋 + 𝑌 ∣ 𝑍] = 𝔼[𝑋 ∣ 𝑍] + 𝔼[𝑌 ∣ 𝑍] 

Proposition A.12. (Tower property) For 𝑋, 𝑌 two random variables such that 𝔼[𝑋] < ∞ and 

𝔼[𝑋 ∣ 𝑌]: Ω → ℝ is a random variable and its randomness is inherited from𝑌, that is, 𝔼[𝑋 ∣ 𝑌] 
is a function of𝑌, the following holds: 

(i) For any random variable 𝑋 and a continuous random variable 𝑌 with probability density 

function 𝑓𝑌 the expectation of 𝑋 ∣ 𝑌 is 
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𝔼[𝔼[𝑋 ∣ 𝑌]] = ∫  
∞

−∞

𝔼[𝑋 ∣ 𝑌 = 𝑦] ⋅ 𝑓𝑌(𝑦)𝑑𝑦 = 𝔼[𝑋] 

(ii) For any random variable𝑋, and a discrete random variable 𝑌 with probability mass 

functions 𝑓𝑌 the expectation of 𝑋 ∣ 𝑌 is 

𝔼[𝔼[𝑋 ∣ 𝑌]] =∑  

𝑦

𝔼[𝑋 ∣ 𝑌 = 𝑦] ⋅ 𝑓𝑌(𝑦) = 𝔼[𝑋] 

A. 3 Variance/Covariance and their properties 

Definition A.13. (i) For any continuous random variables 𝑋, 𝑌 with probability density 

functions 𝑓𝑋 , 𝑓𝑌 respectively 

Var(𝑋) = ∫  
∞

−∞

  (𝑥 − 𝔼[𝑋])2 ⋅ 𝑓𝑋(𝑥)𝑑𝑥 = 𝔼[(𝑋 − 𝔼[𝑋])
2] = 𝔼[𝑋2] − 𝔼2[𝑋]

Cov(𝑋, 𝑌) = ∫  
∞

−∞

 ∫  
∞

−∞

  (𝑥 − 𝔼[𝑋])(𝑦 − 𝔼[𝑌]) ⋅ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝔼[(𝑌 − 𝔼[𝑌])(𝑋 − 𝔼[𝑋])]

 

(ii) For any discrete random variables 𝑋, 𝑌 with probability mass functions𝑓𝑋, 𝑓𝑌 respectively 

Var(𝑋) = ∑  

𝑥

  (𝑥 − 𝔼[𝑋])2 ⋅ 𝑓𝑋(𝑥) = 𝔼[(𝑥 − 𝔼[𝑋])
2] = 𝔼[𝑋2] − 𝔼2[𝑋]

Cov(𝑋, 𝑌) = ∑  

𝑥,𝑦

  (𝑥 − 𝔼[𝑋])(𝑦 − 𝔼[𝑌]) ⋅ 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝔼[(𝑌 − 𝔼[𝑌])(𝑋 − 𝔼[𝑋])]
 

Proposition A.14.  

(i) For any 𝑋 and 𝑌 two random variables the following variance property holds 

Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌) + Cov(𝑋, 𝑌) 

(ii) For independent random variables 𝑋 and𝑌, we have Cov(𝑋, 𝑌) = 0 then, 

Var[𝑋 + 𝑌] = Var[𝑋] + Var[𝑌] 

(iii) For any random variable 𝑋 and a constant𝑐 ∈ ℝ, we have 

 −Var[𝑋 + 𝑐] = Var[𝑋]

 −Var[𝑐𝑋] = 𝑐2Var[𝑋]
 

Proposition A.15. (Law of Total Variation) For any random variables 𝑋, 𝑌 and 𝑋 ∣ 𝑌: Ω → ℝ 

the following holds 

Var(𝑋) = 𝔼[Var(𝑋 ∣ 𝑌)] + Var(𝔼[𝑋 ∣ 𝑌]) 

A. 4 Miscellaneous topics 

Definition A.16. A function 𝑓:ℝ → ℝ is said to be linear if for all constants 𝑐 ∈ ℝ 

𝑓(𝑐𝑥) = 𝑐𝑓(𝑥)∀𝑥 ∈ 𝑋 

Lemma A.17. (Jensen's inequality) Let 𝑋 be a random variable and 𝑔:ℝ → ℝ is a convex 

function, then 

𝑔(𝔼[𝑋]) ≤ 𝔼[𝑔(𝑋)] 

A.4.1 Proof attempt: Credibility exponential premium 

The goal is to find a credibility exponential premium �̃�𝑐 which is the estimator of 𝜇Θ (see 

Definition 3.5) that minimizes the expected exponential loss function (2.7). But this time as 
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opposed to what is done in Theorem 3.10, the estimator is linear in 𝑒𝛼𝑋𝑗 = 𝑌𝑗(𝑗 = 1, … , 𝑛) 

identically distributed transformations of original observed claims, and it is selected from the 

set D̃ = {�̂̃�𝑐: �̂̃�𝑐 = 𝑎0 + ∑  𝑛
𝑗=1  𝑎𝑗𝑋𝑗, 𝑎0, 𝑎𝑗(𝑗=1,…,𝑛) ∈ ℝ}. 

The minimization problem is expressed as follows: 

min
�̃̂�𝑐∈𝔻

 𝔼 [(𝑒𝛼�̃��̃� − 𝑒𝛼�̂�
𝑐
)
2
] = 𝔼 [(𝑒𝛼�̃�𝜃 − 𝑒𝛼�̃�

𝑐
)
2
] 

Or equivalently 

min
𝑎0,𝑎𝑗(𝑗=1,…,𝑛)∈ℝ

 𝔼 [(𝑒𝛼�̃�
𝜃

− 𝑒𝛼(𝑎0+
∑  𝑛
𝑗=1  𝑎𝑗𝑋𝑗))

2

] = 𝔼 [(𝑒𝛼�̃� − 𝑒𝛼(�̃�0+
∑  𝑛
𝑗=1  �̂�𝑗𝑋𝑗))

2

] 

The same argument is presented in the proof of Theorem 3.10, since 𝑋𝑗
′𝑠 are identically 

distributed and by the uniqueness of the credibility exponential premium. Then 

�̂�1 = �̂�2 = ⋯ = �̂�𝑛 

Following this, it possible to write the credibility exponential premium as 

�̃�𝑐 = �̂� + �̂�𝑋‾,

 where 𝑋 =
∑  𝑛
𝑗=1  𝑋𝑗

𝑛

 

�̂� And �̂� are the solutions to 

min
𝑎,𝑏∈ℝ

 𝔼 [(𝑒𝛼�̃�Θ − 𝑒𝛼(𝑎+𝑏𝑋‾))
2
] = 𝔼 [(𝑒𝛼�̃�Θ − 𝑒𝛼(�̂�+�̂�𝑋))

2
] 

Now to recap the form of 𝜇Θ from Theorem 3.5 

𝑒𝛼�̃�Θ = 𝑒𝛼−
1
𝛼
ln 𝔼[𝑒

𝛼𝑋𝑗 ∣Θ] = 𝔼[𝑒𝛼𝑋𝑗 ∣ Θ], 

And rewritten this is 

min
𝑎,𝑏∈ℝ

 𝔼 [(𝔼[𝑒𝛼𝑋𝑗 ∣ Θ] − 𝑒𝛼(𝑎+𝑏𝑋‾))
2
] = 𝔼 [(𝔼[𝑒𝛼𝑋𝑗 ∣ Θ] − 𝑒𝛼(�̂�+�̂�𝑋‾))

2
] 

In simplified form 

𝔼 [(𝔼[𝑒𝛼𝑋𝑗 ∣ Θ] − 𝑒𝛼(𝑎+𝑏𝑋‾))
2
] = 𝔼[𝔼[𝑒𝛼𝑋𝑗 ∣ Θ]2 − 2𝔼[𝑒𝛼𝑋𝑗 ∣ Θ]𝑒𝛼(𝑎+𝑏𝑋‾) + 𝑒2𝛼(𝑎+𝑏𝑋‾)]

 = 𝔼[𝔼[𝑒𝛼𝑋𝑗 ∣ Θ]2] − 2𝔼 [𝔼[𝑒𝛼𝑋𝑗 ∣ Θ]] 𝔼[𝑒𝛼(𝑎+𝑏𝑋‾)] + 𝔼[𝑒2𝛼(𝑎+𝑏𝑋‾)]

 = 𝔼[𝔼[𝑒𝛼𝑋𝑗 ∣ Θ]2] − 2𝑒𝛼𝑎𝔼[𝑒𝛼𝑋𝑗]𝔼[𝑒𝛼𝑏𝑋‾ ] + 𝑒2𝛼𝑎𝔼[𝑒2𝛼𝑏𝑋‾ ]

 

There are two variables of interest, so, partial differentiation and equating to zero is to be 

carried out to minimize the expected loss. Starting with 𝑎 we get 

−2𝛼𝑒𝛼𝑎𝔼[𝑒𝛼𝑋𝑗]𝔼[𝑒𝛼𝑏𝑋‾ ] + 2𝛼𝑒2𝛼𝑎𝔼[𝑒2𝛼𝑏𝑋‾ ] = 0

→ 𝔼[𝑒𝛼𝑋𝑗] = 𝑒𝛼𝑎𝔼[𝑒𝛼𝑏𝑋‾ ]

�̂� =
1

𝛼
ln 
𝔼[𝑒𝛼𝑋𝑗]

𝔼[𝑒𝛼𝑏𝑋‾ ]

 

Then, the following is substituted (1.8) in (1.5) 

It is difficult to take the partial derivative of the resulting form (1.9) with respect to b without 

interchanging expectation and differentiation operators. 
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