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ABSTRACT 

Purpose: This research work aimed at formulating an optimization model based on  

Scheffe’s Third Degree Polynomial (5,3)  that can be used to optimize the compressive 

strength of Glass Fibre Reinforced Concrete (GFRC), which is then compared to Scheffe’s 

Second  Degree Polynomial (5,2) formulation developed by Nwachukwu and others (2017) . 

Methodology: Using Scheffe’s Simplex method, the compressive strength of GFRC was 

determined for different ratios.  Control experiments were also carried out and the 

compressive strength determined. After the tests have been conducted, the adequacy of the 

model was tested using fisher’s f-test and the result of the test shows a good correlation 

between the model and control results.   

Findings: Optimum compressive strength for the Scheffe’s (5,3) model was  obtained as 

21.82 N/mm2. This is slightly higher than the optimum compressive strength for Scheffe’s 

(5,2) model which was obtained as 20.71 N/mm2 by Nwachukwu and others (2017). Since 

structural concrete elements are generally made with concrete having a compressive strength 

of 20 to 35 MPa (or 20 to35 N/mm2 ), it then means that optimized GFRC based on both 

Scheffe’s models  can produce the required compressive strength  needed in major 

construction projects such as bridges and  light-weight structures.  

Recommendations: Major stakeholders in the construction industry are therefore advised to 

use optimized GFRC as it is far cheaper and still possess the required strength needed for 

construction works. 

Keywords: GFRC, Scheffe’s (5,3) Polynomial Model, Optimization, Compressive strength 

,Regression  
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1. INTRODUCTION 

An optimization problem is one requiring the determination of the optimal (maximum or 

minimum) value of a given function, called the objective function, subject to a set of stated 

restrictions, or constraints placed on the variables concerned. Every optimization problem 

requires an objective which might be to maximize profit or benefit, to minimize cost or to 

minimize the use of material resources. Optimization of the concrete mixture design is a 

process of search for a mixture for which the sum of the costs of the ingredients is lowest, yet 

satisfying the required performance of concrete, such as workability, strength and durability. 

Scheffe’s Polynomial Models are examples of optimization models.  In this study, Scheffe’s 

Third Degree Polynomial for five components mixtures (namely cement, fine aggregate, 

coarse aggregate, water and glass fibre), simply stated as Scheffe’s (5,3) polynomial  model 

is developed. 

In general, concrete is a very important material widely used in construction since ancient 

time. Concrete is of no doubt an important building material. According to Neville (1990), 

concrete plays a crucial part in all building structures owing to its numerous advantages 

which ranges from low built in fire resistance, high compressive strength to low maintenance. 

At the same time, it also has a major disadvantage which is that concrete is inherently a brittle 

material. Also, concrete is known for its problem associated with its low tensile strength 

compared to its compressive strength. As a result of this, many new technologies of concrete 

and some modern concrete specification approach were introduced. One of the technologies 

introduced for concrete was the addition of steel bars to reinforce its tension zone. This 

enables concrete gain an amount of tensile strength and thus reducing its brittle nature. Over 

the years the reinforcement (usually steel bars) has been replaced with other materials like 

glass fibre to further increase both its tensile strength and compressive strength and also, 

produce light weighted reinforced concrete unlike when reinforced with steel bars. Concrete’s 

compressive strength is one of the most useful properties of concrete and in most structural 

applications, concrete primarily resists compressive stress. 

Glass Fibre Reinforced Concrete (GFRC) is concrete mixture where the conventionally steel 

reinforcement in concrete production is replaced with a homogenous tiny strands of Alkaline 

Resistant (AR) glass fibre. Although GFRC has a similar density as concrete the product 

from it are 75% lighter due to the thin 10-15mm skin thickness used. For instance, a cladding 

panel manufactured from 100mm thick precast concrete would weigh 240kg/m2 compared to 

a similar GFRC panel of 40-50kg/m2 .GFRC can last as long as pre-cast concrete and can 

perform better when exposed to harsh or severe weather conditions due to absence of steel 

reinforcement that has the tendency to corrode. By using glass fibre as the matrix bound by 

the cementitious adhesion, substantial increase in the flexural strength and impact strength 

are achieved without losing the superb aging properties of the concrete. The combination of 

cement, fine aggregate and glass fibre allows the homogenously reinforced part (GFRC) to be 

made much thinner than one with only intermittent reinforcement. 

The present study therefore presents a formulation of an optimization model that will 

optimize the strength of GFRC. It focuses on the use of scheffe’s third degree polynomial 

model to optimize the strength of GFRC. In recent years, many researchers have used 

Scheffe’s method to carry out one form of optimization project or the other. For example, 

Nwakonobi and Osadebe (2008) used Scheffe’s model to optimize the mix proportion of 

Clay- Rice Husk Cement Mixture for Animal Building. Ezeh and Ibearugbulem (2009) 

applied Scheffe’s model to optimize the compressive cube strength of River Stone Aggregate 

http://www.ajpojournals.org/
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Concrete. Scheffe’s model was used by Ezeh and others (2010a) to optimize the compressive 

strength of cement- sawdust Ash Sandcrete Block. Again Ezeh and others (2010b) optimized 

the aggregate composition of laterite/ sand hollow block using Scheffe’s simplex method. 

The work of Ibearugbulem (2006) and Okere (2006) were also based on the use of Scheffe’ 

mathematical model in the optimization of compressive strength of Perwinkle Shell- Granite 

Aggregate Concrete and optimization of the Modulus of Rupture of Concrete respectively. 

Obam (2009) developed a mathematical model for the optimization of strength of concrete 

using shear modulus of Rice Husk Ash as a case study. Rao and others (2011) investigated 

the effect of size and shape of specimen on compressive strength of GFRC. The work of 

Obam (2006) was based on four component mixtures,  that is Scheffe’s (4,2) and Scheffe’s 

(4,3). That is to say, no work has been done on the use of Scheffe’s method to optimize the 

compressive strength of GFRC except, the work by Nwachukwu and others (2017) which is 

based on Scheffe’s Second Degree Polynomial. Henceforth, the need for this research work, 

whose results will be used to compare the work of Nwachukwu and others (2017). The 

Scheffe’s theory is very relevant that it could predict the compressive strength of the GFRC 

concrete cubes if the mix ratios are known and vice versa 

2. DEVELOPMENT   OF THE OPTIMIZATION MODEL USING SCHEFFE’S 

THIRD   DEGREE POLYNOMIAL 

According to Aggarwal (2002), a simplex lattice is a structural representation of lines joining 

the atoms of a mixture, and these atoms are constituent components of the mixture. For 

GFRC mixture, the constituent elements are the water, cement, fine aggregate (sand), coarse 

aggregate and glass fibre. Thus, a simplex of five-component mixture is a four-dimensional 

solid. According to Obam (2009), mixture components are subject to the constraint that the 

sum of all the components must be equal to 1. That is: 

(1) 

 Where Xi ≥ 0 and  i = 1, 2, 3… q, and q = the number of mixtures 

2.1 THE SIMPLEX LATTICE DESIGN 

The (q,m) simplex lattice design are characterized by the symmetric arrangements of points 

within the experimental region and a well chosen polynomial equation to represent the 

response surface over the entire simplex region (Aggarwal, 2002). The (q, m) simplex lattice 

design given by Scheffe, according to Nwakonobi and Osadebe (2008) contains q+m-1Cm 

points where each components proportion takes (m+1) equally spaced values 

 ranging between 0 and 1 and all possible mixture with these 

component proportions are used, and m is scheffe’s polynomial degee, which in this present 

study is 3. 

For example a (3, 2) lattice consists of 3+2-1C2 i.e. 4C2 = 6 points. Each Xi can take m+1 = 3 

possible values; that is  with which the possible design points 

are . 

According to Obam (2009), a Scheffe’s polynomial function of degree, m in the q variable 

X1, X2, X3, X4  … Xq is given in form of: 

Y = b0 +  x  + j j + + j
2 +… n 2 n                                    (2) 

http://www.ajpojournals.org/
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where (1 ≤ i ≤ q, 1 ≤ i ≤ j ≤ k ≤ q, 1 ≤ i1 ≤ i2 ≤ … ≤ in≤ q respectively) , b = constant 

coefficients and Y is the response which represents the property under study, which ,in this 

case is the compressive strength. 

This research work was based on the (5, 3) simplex hence the actual form of Eqn. (2) will be 

developed for (5, 3) lattice subsequently.  

2.2. RELATIONSHIP BETWEEN PSEUDO AND ACTUAL COMPONENTS. 

In Scheffe’s mix design, the relationship between the pseudo components and the actual 

components is given as: 

Z = A * X                                                                                        (3) 

Where Z is the actual component; X is the pseudo component and A is the coefficient of the 

relationship 

Re-arranging the equation 

X = A-1 * Z                                                                                           (4) 

In this research work a five component concrete mix  constituents cement, river sand as fine 

aggregate, granite as coarse aggregate, water/cement (w/c) ratio and glass fibre were on  

focus .The space to use in the analysis will be (q – 1), which is equal to four dimensional 

factor spaces. A four dimensional factor space is an imaginary dimensional space (q, m) 

simplex lattice designs as shown in Fig.1 for (5, 3) simplex lattice design.  

 

 

  

 

 

 

 

 

 

 

 

                                         

 

 

 

 

 

Fig 1: Imaginary Space Showing Four-Dimensional Factor Space 
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Let Ajk (Xijk) designate arbitrary quantities of the five pseudo components of the mix at an 

arbitrary point on the factor space where Ajk is an arbitrary point on the factor space and Xijk 

is the arbitrary quantities of all pseudo components at Xi at an arbitrary point, Ajk. In general 

Xijk can take the form of: 

 Xijk = X1jk, X2jk, X3jk, X4jk, X5jk.                                                                                              (5) 

The quantities of the five pseudo components at the 35 points are as follows: each Xi can take 

m+1 = 3 possible values i. e . Then the possible design points, are: 

A1 ( 1,0,0,0,0); A2 (0,1,0,0,0); A3 (0,0,1,0,0); A4 (0,0,0,1,0), A5 (0,0,0,0,1); A112 (2/3. 1/3, 0, 

0, 0,); A122 = (1/2, 2/3, 0,0,0); A113 (2/3, 0, 1/3, 0,0); A113 (2/3, 0, 1/3, 0,0); A133 (1/3, 0, 0, 

2/3, 0, 0); A114 (2/3, 0,0,1/3,0); A114 (1/3, 0, 0, 2/3, 0); A115, (2/3, 0, 0, 0, 1/3); A115 (1/3, 

0,0,0, 2/3); A223 (0, 2/3, 1/3, 0,0); A223 (O, 1/3, 0,0); A224 (0,0 2/3, 0, 1/3, 0); A224 (0, 1/3, 0, 

2/3,0); A225 (0, 2/3, 0,0, 1/3); A255 (0, 1/3, 0, 0, 2/3); A334 (0,0, 2/3, 1/3, 0); A344 (0,0,1/3, 

2/3,0), A355 (0,0,2/3,0, 1/3);  A355 (0,0,1/3,0, 2/3); A445 (0,0,0, 2/3, 1/3); A445 (0,0,0, 1/3, 

2/3); A123 (1/3, 1/3, 1/3, 0,0); A124 (1/3, 1,3, 0, 1/3, 0); A125 (1/3, 1/3, 0,0, 1/3); A134 (134 (1/3, 

0, 1/3, 1/3, 0); A135 (1/3, 0, 1/3, 0, 1/3); A145 (1/3, 0, 0,1/3,1/3); A234 (0,1/3, 1/3,1/3, 0); A235 

(0,1/3, 1/3, 0, 1/3); A245 (0, 1/3, 0, 1/3, 1/3); A345 (0,0,1/3,1/3, 1/3).                                      (6) 

2.3. FORMULATION OF REGRESSION EQUATION FOR SCHEFFE’S (5, 3) 

LATTICE 

 The regression equation by Scheffe (1958), otherwise known as response is given as: 

f (x) =Y = b0+   +  +  + i
2 + …inxi2xin                           (7) 

Where 1 ≤ i ≤ q, 1 ≤ i ≤ j ≤ k ≤ q, 1 ≤ i1 ≤ i2 ≤ … ≤ in ≤ q respectively 

 b0 is the arbitrary constant and  y is the response, and this response is a polynomial function 

of pseudo component of the mix. 

Hence, for Scheffe’s (5,3)  simplex lattice,  the regression equation  is derived from Eqn.(7) 

and given  as follows: 

Y = b0 + b1 X1 + b2X2 + b3X3 + b4X4 + b5X5 + b11X1
2 + b12X1X2 + b13X1X3 + b14X1X4 + 

b15X1X5 + b111X1
3 + b112 X1

2X2 + b113X1
2X3 + b114X1

2X4 + b115X1
2X5 +b22X2

2 + b23X2X3 + 

b24X2X4 + b25X2X5 + b222 X2
3 + b223X2

2X3 + b224X2
2X4 + b225X2

2X5 + b33X3
2 + b34X3X4 + 

b35X3X5+ b333X3
3 + b334X3

2X4 + b335X3
2X5 + b44X4

2 +  b45X4X5 + b444X4
3 + b445X4

2X5 + 

b55X5
2 + b555X5

3                                                                                                                                                                         (8)

                                                                                                                                       

Multiplying Eqn. (1) by b0 yields Egn. (9) 

b0 = b0X1 + b0X2 + b0x3 + b0X4 + b0X5                                                                                            (9) 

By multiplying Eqn. (1) successively by X1, X2, X3, X4 and X5 and re-arranging, we obtained 

Eqns. (10) – (14). 

    =  X1 - X1X2 - X1X3 - X1X4 - X1X5                                                   (10) 

    =  X2 - X1X2 – X2X3 – X2X4 – X2X5                                          (11) 

    =  X3 - X1X3 – X2X3 – X3X4 – X3X5                                        (12) 

    =  X4 - X1X4 – X2X4 – X3X4 – X4X5                                          (13) 

http://www.ajpojournals.org/
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    =  X5 - X1X5 – X2X5 – X3X5 – X4X5                                          (14) 

Substituting Eqns.(9 -14) into Eqn. (8) yields Eqn. (15) 

Y = b0X1 + b0X2 + b0X3 + b0X4 + b0X5 + b1 X1 + b2X2 + b3X3 + b4X4 + b5X5 + b11 (X1 - X1X2 - 

X1X3 - X1X4 - X1X5  )
 + b12X1X2 + b13X1X3 + b14X1X4 + b15X1X5 + b111X1

3 + b112 (X1 - X1X2 - 

X1X3 - X1X4 - X1X5  )X2 + b113(X1 - X1X2 - X1X3 - X1X4 - X1X5  ) X3 + b114(X1 - X1X2 - X1X3 - 

X1X4 - X1X5  ) X4 + b115 (X1 - X1X2 - X1X3 - X1X4 - X1X5  ) X5 +b22(X2 - X1X2 – X2X3 – X2X4 – 

X2X5) + b23X2X3  + b24X2X4 + b25X2X5 + b222 X2
3  + b223(X2 - X1X2 – X2X3 – X2X4 – X2X5  

)X3 + b224(X2 - X1X2 – X2X3 – X2X4 – X2X5  ) X4 + b225(X2 - X1X2 – X2X3 – X2X4 – X2X5 ) X5       

+ b33(X3 - X1X3 – X2X3 – X3X4 – X3X5  ) + b34X3X4 + b35X3X5+ b333X3
3 + b334(X3 - X1X3 – 

X2X3 – X3X4 – X3X5  ) X4 + b335(X3 - X1X3 – X2X3 – X3X4 – X3X5  )X5 + b44(X4 - X1X4 – X2X4 

– X3X4 – X4X5  ) +  b45X4X5 + b444X4
3 + b445(X4 - X1X4 – X2X4 – X3X4 – X4X5 ) X5 + b55(X5 - 

X1X5 – X2X5 – X3X5 – X4X5  ) + b555X5
3                                                                                     (15) 

Expanding Eqn. (15) , we have 

Y = b0X1 + b0X2 + b0X3 + b0X4 + b0X5 + b1 X1 + b2X2 + b3X3 + b4X4 + b5X5 + b11 X1 - 

b11X1X2 - b11X1X3 - b11X1X4 - b11X1X5  
 + b12X1X2 + b13X1X3+ b14X1X4 + b15X1X5 + b111X1

3 + 

b112 X1 X2  - b112 X1 X2
2

 - b112 X1 X2X3 - b112 X1 X2X4 - b112 X1 X2X5 + b113X1 X3- b113X1X2 X3 - 

b113X1 X3
2

 - b113X1 X3X4 - b113X1 X3X5 + b114X1 X4 - b114X1X2 X4 - b114X1X3 X4 - b114X1 X4
2

 - 

b114X1 X4X5   + b115 X1 X5 - b115X1X2 X5 - b115X1X3 X5 - b115X1X4 X5 - b115X1 X5
2
   + b22X2 – 

b22X1X2 – b22X2X3 – b22X2X4 – b22X2X5  + b23X2X3  + b24X2X4 + b25X2X5 + b222 X2
3  + b223X2 

X3– b223X1X2 X3 – b223X2 X3
2– b223X2 X3X4 – b223X2 X3X5  + b224 X2 X4 - b224 X1X2 X4 – b224 

X2X3 X4 – b224 X2 X4
2

 – b224 X2 X4X5  + b225X2 X5 - b225X1X2 X5  – b225X2X3 X5– b225X2X4 X5– 

b225X2 X5
2  + b33X3 - b33X1X3 – b33X2X3 – b33X3X4 – b33X3X5  + b34X3X4  + b35X3X5+ b333X3

3 

+ b334X3 X4 - b334X1X3 X4 – b334X2X3 X4 – b334X3 X4
2

 – b334X3 X4X5   + b335X3 X5  - b335X1X3 

X5– b335X2X3 X5– b335X3X4 X5 – b335X3 X5
2

   + b44X4 – b44X1X4 – b44X2X4 – b44X3X4 – 

b44X4X5 + b45X4X5 + b444X4
3 + b445X4 X5 – b445X1X4 X5 – b445X2X4 X5 – b445X3X4 X5 – b445X4 

X5
2 + b55 X5 - b55 X1X5 – b55 X2X5 – b55 X3X5 – b55 X4X5   + b555X5

3                                    (16) 

Collecting like terms in Eqn. (16) yields Eqn. (17)                                                                                                

Y=  X1 [ b o + b1 + b11 ] + X2  [ b0 +b2 + b22 ] + X3 [b0+ b3 + b33 ] + X4 [ b0 + b4 + b4] + X5 [ b0 

+ b5 + b55 ] + X1 X2 [ b12  – b11 - b22 + b112]  + X1 X3  [ b13 – b11 – b33 + b113 ] + X1 X4 [ b14 – b11 – 

b44  + b114 ] + X1 X5 [ b15 – b11  - b55 + b115 ] + X1
3 [ b111] + X1 X2

2 [ - b112] + X1 X3
2 [ - b113] + 

X1 X4
2 [ - b114] + X1 X5

2 [ - b115] + X1 X2  X3 [ - b112 – b113 – b223 ] + X1 X2 X4 [ - b112 – b114 – 

b224 ] + X1 X2 X5 [-b112  - b115 – b225 ] +  X1 X3 X4 [ - b113 – b114 – b334 ] + X1 X3 X5 [ - b113 – b115 

– b335 ] + X1 X4 X5 [ - b114 – b115 – b445]  + X2 X3 [ b23 - b22 – b33 + b223 ] + X2 X4 [ b24 - b22 – b44 

+ b224 ]  + X2 X5 [ b25 - b22 – b55 + b225 ]  + X2
2 [ b222]  + X2 X3

2 [ - b223] + X2 X4
2 [ - b224] + 

X2X5
2 [ - b225] + X2  X3 X4 [ -b22 +b224 – b334 ] + X2 X3 X5 [ - b223 – b225 – b335 ] + X2 X4 X5  [ - 

b224 – b225 – b445] + X3 X4 [ b34 – b33 – b44 + b334 ] + X3 X5 [ b35 – b33 – b55 + b335 ] + X3
2  [ b333 ] 

+ X3 X4
2 [ -b334 ] + X3 X5

2 [ -b335 ] + X3 X4 X5 [- b334 – b335 – b445 ] + X4  X5 [ b45 – b44 - b55+ b445 

] + X4
2  [ b444 ] +  X4 X5

2 [ - b445  ] + X5
2 [b555]                                                                       (17) 

Let   

[b0 + b1 + b11] =  β 1; [b0 + b2 + b22] = β 2 ; [b0 + b3 + b33 ] = β 3;  [b0 + b4 + b44 ] = β 4; [b0 + b5 + 

b55 ] = β 5; [ b12 – b11  - b22 + b112 ] = β 12.;  [b13 – b11 - b33 + b113 ] = β 13; [ b14 – b14  - b11 – b44 + 

b114 } = β 14; [ b15 – b11 – b55 + b115 ] = β 15 ; [- b112  ] = γ 12; [ - b 113 ] = γ 13; [- b114  ] = γ 14 ; [- 

b115  ] = γ 15; [-b112- b113 –b223] = β 123; [-b112- b114  – b224] = β 124; [-b112- b115 –b225] = β 125; [-

b113- b114 –b334] = β 134; [-b113- b115 –b335] = β 135; [-b113- b115 –b445] = β 145; [b23 – b22 - b33 + b223 
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] = β 23; [b24 – b22  - b44 + b224 ] = β 24; [b25 – b22 - b55 + b225 ] = β 25; [- b223  ] = γ 23 ; [- b224  ] = γ 

24 ; [- b225 ] = γ 25 ;  [-b223- b224 –b334] = β 234; [-b223- b225 –b335] = β 335; [-b224 – b225 –b445] = β 

245; [b34 – b33 – b44 + b334 ] = β 34; [b35 – b33 – b55 + b335 ] = β 35; [- b334  ] = γ 34 ; [- b335  ] = γ 35 ; [-

b334 – b335 –b445] = β 345; [b45 – b44 – b55 + b445 ] = β 45; [- b445  ] = γ 45 ;                                   (18) 

Substituting Eqns.(18) into Eqn. (17) yields Eqn. (19) 

Y= β 1X1 + β 2X2  + β 3X3 + β 4X4 + β 5X5  + β 12X1 X2  + β 13X1 X3  + β 14X1 X4 + β 15X1 X5 + γ 

12X1 X2
2  + γ 13 X1 X3

2  + γ 14 X1 X4
2  + γ 15 X1 X5

2  + β 123 X1 X2  X3 + β 124 X1 X2 X4   + β 125X1 

X2 X5 +  β 134X1 X3 X4  + β 135X1 X3 X5 + β 145X1 X4 X5  + β 23 X2 X3 + β 24X2 X4  + β 25X2 X5 + γ 

23 X2 X3
2  + γ 24X2 X4

2 + γ 25 X2X5
2 + β 234X2  X3 X4  + β 235X2 X3 X5  + β 245 X2 X4 X5    + β 34 X3 

X4 + β 35X3 X5 + γ 34 X3 X4
2 + γ 35 X3 X5

2  + β 345X3 X4 X5 + β 45X4  X5 + γ 45 X4 X5
2                (19) 

Equation (19) is the regression equation for Scheffe’s (5, 3) simplex 

2.4 .DETERMINATION OF THE COEFFICIENTS OF THE SCHEFFE’S (5, 3) 

POLYNOMIAL 

Let Yi = response function for the pure component,   

Then, through expansion of the work of Obam (2006), it can be established that:  

β1 = Y1; β 2=Y2; β 3=Y3; β 4= Y4; and β 5= Y5                                                                    20(a-e) 

β12 = 9/4(Y112 + Y122 –Y1 –Y2); β 13 =9/4 (Y113+ Y133-Y1-Y3); β 14 = 9/4 (Y114+Y144-Y1-Y4) 

21(a-c)      

β15 = 9/4(Y115+Y155-Y1-Y5); β 23=9/4 (Y223 +Y233-Y2-Y3); β 24=9/4 (Y224+Y244-Y2-Y4) 22(a-c)      

β25 = 9/4(Y225+Y255-Y2-Y5); β 34=9/4(Y334+Y344-Y3-Y4); β 35=9/4(Y335+Y355-Y3-Y5)    23(a-c)      

β45 = 9/4(Y445+Y455-Y4-Y5); γ 12 = 9/4(3Y112+3Y122-Y1+Y2); γ 13=9/4(3Y113+3Y133-Y1+Y3)                        

24(a-c) 

γ14 = 9/4(3Y114+3Y144-Y1+Y4); γ 15 =9/4(3Y115+3Y115-Y1+Y5); γ 23=9/4(3Y223+3Y233-Y2+Y3)                     

25(a-c)    

γ24 = 9/4 (3 Y 224+3 Y 244-Y2+Y4); γ 25=9/4(3Y225+3Y255-Y2+Y5); γ 34 = 9/4(3Y334+3Y344Y3 

+Y4)                                                                                                                                  26(a-c) 

γ35 =9/4(3Y335+3Y355-Y3+Y5); γ 45=9/4(3Y445+3Y455-Y4+Y5)                                         27(a-b) 

β123 = 27Y123 -27/4(Y112+Y122+Y113+133+Y223+Y233) + 9/4(Y1+Y2+Y3)                                (28) 

β124 =27Y124 -27/4(Y112+Y122+Y114+Y144+Y224+Y244) +9/4(Y1+Y2+Y4)                              (29) 

β125 =27Y125-27/4(Y112+Y122+Y115+Y155+Y225+Y255) + 9/4(Y1+Y2+Y5)                              (30)  

β134=27Y134-27/4(Y113+Y133+Y114+Y144+Y334+Y344) + 9/4(Y1+Y3+Y4)                               (31)  

β135 =27Y135 -27/4(Y113+Y133+Y115+Y155+Y335+Y355) + 9/4(Y1+Y3+Y5)                              (32) 

β145 = 27Y145 - 27/4(Y114+Y144 +Y115 + Y155+Y445+Y455) + 9/4(Y1+Y4 +Y5)                        (33) 

β234 = 27Y234- 27 /4(Y223+Y233+Y224+Y244+Y334 + Y344) +9/4(Y2+Y3+Y4)                            (34) 

β235 = 27Y235 -27/4(Y223+Y233+Y225+Y255+Y335+Y355) + 9/4(Y2+Y3+Y5)                             (35) 

β245=27Y245-27/4(Y224+Y244+Y225+Y255+Y445+Y455)    + 9/4(Y2+Y4+Y5)                            (36) 

β345=27Y345-27/4(Y334+Y344+ Y335+ Y355 + Y445 + Y455) +9/4(y1+y4+y5)                             (37) 
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2.5. MIX RATIO 

Since the simplex operates in such a way that sum of all components must be one, it becomes 

impossible to use normal mix ratios such as 1:2:4 or 1:3:6.  Rather transformation was carried out 

from actual to pseudo components. .   

2.5.1. ACTUAL MIX RATIO 

Based on past experience and literature, the arbitrary mix proportions prescribed for the vertices 

of the pentagon is shown in Fig.2.It is in the order of (W/C:C:F.A:C.A:G.F) which represents 

water/ cement ratio, cement, fine aggregate, coarse aggregate and glass fibre respectively  

 

 

 

 

 

 

 

 

 

                                                             

 

 

 

 

 

 

 

 

 

    Fig. 2: Vertices of a (5, 3) lattice (actual) 

2.5.2: PSEUDO MIX RATIO 

From Eqn.(6), the corresponding pseudo mix ratios are shown in  Fig. 3 

 

 

 

 

A1(0.6:1:1.7:2:0:5) 

 

(0.56:1:1:6:1.8:0.8) 

(0.5:1:1:2:1:7:1)                   (0.7:1:1:1.8:1:1.2)                                       

(0.75:1:1.3:1.2:1.5)          
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2.5.3. COMPONENTS TRANSFORMATION 

If X represent the pseudo component and Z the actual components. For component 

transformation, Sheffes suggested the following equations: 

                     X = B * Z;   Z = A * X                        38 (a-b) 

Where A = matrix whose elements are arbitrary mix proportions; B = the inverse of matrix A;   

Z = matrix of the actual components and X = matrix of the pseudo component obtained from 

Fig. (3). 

Considering a (5, 3) simplex lattice, it follows that there are five components in the mixture. 

Hence, Eqn. (38b) becomes: 

            Z1               A111 A112 A113 A114           A115     X1 

Z2                     A122   A222   A223   A242      A225       X2 

Z3       =      A331   A332 A223   A224      A225    X3                                                                                         (39)  

Z4        A441   A442 A443   A444        A445    X4 

Z5              A551   A552   A553   A554      A555      X5              

(1:0:0:0:0) 

(0:1:0:0:0) 

(0:0:1:0:0) (0:0:0:1:0) 

(0:0:0:0:1) 

A1 

A115 

A155 

A255 

A114 

A235 

A355 

A455 

A5 

A445 

A4 A344 A334 A3 

A233 

A223 

A335 
A244 

A145 

A245 

A144 

A345 

A234 

A135 

A134 

A133 

A2 

A122 

A112 

A113 

A123 

A124 

A125 A225 

Fig. 3 vertices of a (5, 3) lattice (pseudo) 
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Substituting   the     mix ratios   from point A (Figures 2 and 3) respectively into Eqn. (39), 

we obtain: 

            0.67  A111 A112 A113 A114 A115  1 

       1            =             A221 A222 A223 A224 A225    =           0 

            1.7                                     A331 A332 A333 A334 A335   0                                 (40) 

              2              A441 A442 A443 A444 A445   0    

             0.5  A551 A552 A553 A554 A555   0 

Transforming the R.H.S matrix and solving, we obtain 

A111= 0.67; A221= 1; A331= 1.7; A441= 2; A551= 0.5 

The same approach is used to obtain the remaining values as shown in Eqn. (41) 

          Z1                     0.67   0.56    0.5   0.7   0.75             X1 

          Z2                  1.0     1.0    1.0    1.0    1.0             X2 

          Z3        =           1.7      1.6   1.2     1.0   1.3             X3                                                                       (41) 

          Z4                  2.0       1.8   1.7    1.8    1.2             X4 

          Z5                   0.5       0.8   1.0    1.2     1.5              X5 

Considering mix ratios at the mid points from Eqn.(6) and substituting these pseudo mix 

ratios in turn into Eqn.(41) will yield the corresponding actual mix ratios. 

For point A112 

          Z1               0.67   0.56    0.5   0.7   0.75          0.67                        0.63 

          Z2                1.0     1.0    1.0    1.0    1.0          0.33 1 

          Z3      =          1.7      1.6   1.2     1.0   1.3           0                          =         1.67                        (42) 

          Z4                     2.0       1.8   1.7    1.8    1.2           0                             1.90 

          Z5                0.5       0.8   1.0    1.2     1.5           0                             1.60 

Solving, Z1 = 0.63; Z2 = 1.00; Z3 = 1.67’ Z4 = 1.90; Z5 = 1.60 

The same approach goes for the remaining mid-point mix ratios 

Hence, to generate the regression coefficients, 35 experimental tests were carried out and the 

corresponding mix ratios depicted in Table 1 
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Table 1: Mix Ratio for the (5.3) Lattice  

Point   Pseudo 

X1         X2 

     Component 

X3          X4          X5 

Response  Actual  

  Z1            Z2 

Component  

 Z3          Z4       Z5 

1 1 0 0 0 0 Y1 0.67 1.00 1.70 2.0 0.5 

2 0 1 0 0 0 Y2 0.56 1.00 1.60 1.8 0.8 

3 0 0 1 0 0 Y3 0.50 1.00 1.20 1.7 1.0 

4 0 0 0 0 0 Y4 0.70 1.00 1.00 1.8 1.2 

5 0 0 0 0 1 Y5 0.75 1.00 1.30 1.2 1.5 

112 0.67 0.33 0 1 0 Y112 0.63 1.00 1.67 1.9 1.6 

122 0.33 0.67 0 0 0 Y122 0.60 1.00 1.63 1.8 0.7 

113 0.67 0 0.33 0 0 Y113 0.61 1.00 1.54 1.9 0.6 

133 0.33 0 0.67 0 0 Y113 0.56 1.00 1.37 1.8 0.8 

114 0.67 0 0 0.33 0 Y114 0.68 1.00 1.47 1.9 0.7 

144 0.33 0 0 0.67 0 Y144 0.69 1.00 1.23 1.8 0.9 

115 0.67 0 0 0 0.33 Y115 0.70 1.00 1.57 1.7 0.8 

155 0.33 0 0 0 0.67 Y115 0.72 1.00 1.43 1.4 1.1 

223 0 0.67 0.33 0 0 Y223 0.55 1.00 1.40 1.7 0.8 

233 0 0.33 0.67 0 0 Y233 0.52 1.00 1.20 1.7 0.9 

224 0 0.67 0 0.33 0 Y224 0.61 1.00 1.67 1.8 0.9 

244 0 0.33 0 0.67 0 Y244 0.66 1.00 1.73 1.8 1.0 

225 0 0.67 0 0 0.33 Y225 0.63 1.00 1.50 1.6 0.7 

255 0 0.33 0 0 0.67 Y255 0.69 1.00 1.40 1.4 0.6 

234 0 0 0.67 0.33 0 Y334 0.57 1.00 1.13 1.7 1.0 

344 0 0 0.33 0.67 0 Y344 0.64 1.00 1.07 1.7 1.1 

335 0 0 0.67 0 0.33 Y355 0.58 1.00 1.23 1.5 1.1 

355 0 0 0.33 0 0.67 Y335 0.67 1.00 1.27 1.3 1.3 

445 0 0 0 0 0.67 Y445 0.72 1.00 1.10 1.6 1.3 

455 0 0 0 0.67 0.33 Y445 0.73 1.00 1.20 1.4 1.4 

123 0.33 0.33 0.33 0 0 Y123 0.57 1.00 1.49 1.8 0.7 

124 0.33 0.33 0 0.33 0 Y124 0.64 1.00 1.09 1.8 0.8 

125 0.33 0.33 0 0 0.33 Y125 0.66 1.00 1.52 1.6 0.9 

134 0.33 0.33 0.33 0.33 0 Y134 0.62 1.00 1.29 1.8 0.8 

135 0.33 0 0.33 0.33 0.33 Y135 0.63 1.00 1.39 1.6 0.9 

145 0.33 0 0 0 0.33 Y145 0.70 1.00 1.32 1.6 1.0 

234 0 0 0.33 0.33 0 Y234 0.58 1.00 1.25 1.7 0.9 

235 0 0.33 0.33 0 0.33 Y235 0.60 1.00 1.32 1.5 1.0 

245 0 0.33 0 0.33 0.33 Y245 0.67 1.00 1.29 1.5 1.1 

345 0 0 0.33 0.33 0.33 Y345 0.64 1.00 1.6 1.5 1.2 

2.5.4. CONTROL POINTS 

Thirty five (35) different controls were predicted which according to Scheffe’s (1958), their 

summation should not be greater than one. They are: 

C1 (0.25: 0.25: 0.25:0.25: 0); C2 (0.25:0.25: 0.25:0: 0.25); C3 (0.25:0.25:0.25:0.25); C4 

(0.25:0.0.25: 0.25:0.25); C5 (0.0.25:0.25:0.25:0.25); C112 (0.2:0.2:0.2: 0.2:0.25); C122 (0.3: 
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0.3: 0.3: 0:0.1); C113 (0.3: 0.3: 0.3: 0:0.1); C133 (0.3:0.3:0.3:0.1); C114 (0.3:0: 0.3:0.3:0.1);C144 

(0:0.3:0.3:0.3:0.1); C115(0.1:0.3:0.3:0.3:0); C155(0.3:0.1:0.3:0.3:0); C223(0.3:0.3:0.1:0.3:0); 

C233 (0.1:0.2: 0.3:04:0); C224 (0.30:0.20:0:0 0.4:0); C244 (0.20: 0.20:010:0.10:0.40); C225 

(0.30:0.10:0.30:0.20:0.10); C255 (0.25: 0.25:0.10:0.15:0.20); C334 (0.30: 0.30: 0.20:0.20: 

0.10);C344 (0.10: 0.30: 0.30: 0.30:0); C335 (0.30: 0.30:0.20: 0.20: 0.20); C355 (0.25:0.15: 0.20: 

0.20:0.20); C445(0.10:0.20:0.30:0.40:0); C455(0:0.40: 0.20: 0.30:0.10); C123 

(0.25:0.10:0.40:0:0.25);C124 (0.30:0.20: 0.40:0.10,0); C135 (0.25:0.20:0.20:0.20:0.15); C134 

(0.10:0.30:0 0.30:0.30); C135 (0.25:0.20: 0.20: 0.20: 0.15); C145 (0.10: 0.10: 0.10 : 0.30 : 

0.40); C234 (0.40: 0.20: 0.10: 0.10: 0.30); C235 (0.25: 0.25: 0.15: 0.25: 0.10); C245 (0.15: 0.20: 

0.10:0.25:0.30);C345 (0.30: 0.10: 0.20: 0.25: 0.15);                                                               (43) 

Substituting these values into Eqn (41), gives the actual mixes values as follows: 

For control point C1; 

    Z1  0.67 0.56 0.5 0.7 075  0.25  0.61  

    Z2     =  1.0 1.0 1.0 1.0 1.0  0.25  1.00 

    Z3  1.7 1.6 1.2 1.0 1.3  0.25 = 1.38                (44) 

    Z4  2.0 1.8 1.7 1.8 1.2  0.25  1.83 

    Z5  0.5 0.8 1.0 1.2 1.5  0  0.5 

The rest are shown in Table 2 

Table 2: Actual and Pseudo Component of Scheffe (5,3) Lattice for Control Points 

Point   Pseudo 

X1         X2 

     Component 

X3          X4          X5 

Control  

Point   

Actual  

Z1            Z2 

Component  

 Z3        Z4      Z5 

1 0.25 0.25 0.25 0.25 0 C1 0.61 1 1.38 1.83 0.5 

2 0.25 0.25 0.25 0 0.25 C2 0.62 1 1.45 1.68 0.8 

3 0.25 0.25 0 0.25 0.25 C3 0.67 1 1.40 1.70 1 

4 0.25 0 0.25 0.25 0.25 C4 0.66 1 1.30 1.68 1.2 

5 0 0.25 0.25 0.25 0.25 C5 0.63 1 1.28 1.63 1.5 

12 0.2 0.2 0.2 0.2 0.2 C112 0.64 1 1.36 1.70 0.65 

22 0.3 0.3 0.3 0.1 0 C122 0.59 1 1.45 1.83 0.75 

13 0.3 0.3 0.3 0 0.1 C113 0.59 1 1.48 1.77 0.85 

33 0.3 0.3 0 0.3 0.1 C133 0.65 1 1.42 1.80 1 

14 0.3 0 0.3 0.3 0.1 C114 0.64 1 1.30 1.77 0.9 

44 0 0.3 0.3 0.3 0.1 C144 0.60 1 1.27 1.71 1 

115 0.1 0.3 0.3 0.3 0 C155 0.60 1 1.31 1.79 1.55 

115 0.3 0.1 0.3 0.3 0 C155 0.62 1 1.33 1.83 1.1 

223 0.3 0.1 0.3 0.3 0 C223 0.63 1 1.41 1.85 1.25 

233 0.1 0.2 0.3 0.4 0 C233 0.61 1 1.25 1.79 1.35 

224 0.30 0.20 0.10 0.4 0 C224 0.64 1 1.35 1.85 0.89 

244 0.20 0.20 0.10 0.10 0.40 C244 1.40 1 1.04 1.59 1.08 

225 0.30 0.10 0.30 0.20 0.10 C225 0.62 1 1.36 1.77 0.92 

255 0.25 0.25 0.10 0.15 0.20 C255 0.61 1 1.51 3.16 0.91 

334 0.30 0.30 0.20 0.20 0.10 C334 0.68 1 1.56 1.96 0.98 
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344 0.10 0.30 0.30 0.30 0 C344 1.30 1 1.31 1.79 0.95 

335 0.30 0.15 0.20 0.20 0.20 C335 0.65 1 0.96 1.05 0.97 

355 0.25 0.20 0.20 0.20 0.20 C355 0.64 1 1.37 1.71 0.79 

445 0.10 0.20 0.30 0.40 0 C445 0.61 1 1.25 1.79 0.99 

455 0 0.10 0.20 0.30 0.10 C455 0.61 1 1.31 1.72 1.03 

123 0.25 0.10 0.40 0 0.25 C123 0.61 1 1.39 1.66 0.98 

124 0.30 0.20 0.40 0.10 0 C124 0.58 1 1.41 1.82 0.83 

125 0.15 0.15 0.20 0.10 0.40 C125 0.65 1 1.36 1.57 1.11 

134 0.10 0.30 0 0.30 0.30 C134 0.67 1 1.34 1.65 1.10 

135 0.25 0.20 0.20 0.20 0.15 C135 0.74 1 1.38 2.08 0.88 

145 0.10 0.10 0.10 0.30 0.40 C145 0.68 1 1.27 1.57 1.19 

234 0.40 0.20 0.10 0.10 0.30 C234 0.73 1 1.61 1.87 1.03 

235 0.25 0.25 0.15 0.25 0.10 C235 0.63 1 1.39 1.78 0.93 

245 0.15 0.20 0.10 0.25 0.30 C245 0.66 1 1.34 1.64 1.09 

345 0.30 0.10 0.20 0.25 0.15 C345 0.64 1 1.34 1.75 0.96 

15 0.3 0.3 0 0.3 0.1 C15 0.65 1 1.42 1.80 1 

23 0.3 0 0.3 0.3 0.1 C23 0.64 1 1.30 1.77 0.9 

24 0 0.3 0.3 0.3 0.1 C24 0.60 1 1.27 1.71 1 

25 0.1 0.3 0.3 0.3 0 C25 0.60 1 1.31 1.79 1.15 

34 0.3 0.1 0.3 0.3 0 C34 0.62 1 1.33 1.83 1.1 

35 0.3 0.3 0.1 0.3 0 C35 0.63 1 1.41 1.85 1.25 

45 0.1 0.2 0.3 0.4 0 C45 0.61 1 1.25 1.79 1.35 

The actual component as transformed from Eqn. (41) and Table (1) and (2) were used to 

measure out the quantities of water (Z1), cement (Z2), fine aggregate as sand (Z3), coarse 

aggregate (Z4) and glass fibre (Z5) in their respective ratios for the concrete cube strength test. 

3. MATERIALS AND METHODS 

3.1 MATERIALS 

The materials investigated are the mixture of cement, water, fine and coarse aggregate and 

glass fibre. The cement is Dangote cement, a brand of Ordinary Portland Cement, conforming 

to British Standard Institution BS 12 (1978). The fine aggregate, whose size ranges from 0.05 

- 4.5mm was procured from the local river. Crushed granite of 20mm size downgraded to 

4.75mm obtained from a local stone market was used in the experimental investigation .Also; 

Glass Fibre of alkali resistant type (CEM-FIL) was used in the experimental investigation and 

water drawn from the clean water source. 

3.2. METHOD 

3.2.1. SPECIMEN PREPARATION / BATCHING/ CURING 

The specimens for the compressive strength were concrete cubes. They were cast in steel 

mould measuring 150mm*150mm*150mm. The mould and its base were damped together 

during concrete casting to prevent leakage of mortar. Thin engine oil was applied to the inner 

surface of the moulds to make for easy removal of the cubes. Batching of all the constituent 

material was done by weight using a weighing balance of 50kg capacity based on the adapted 

mix ratios and water cement ratios. A total number of 70 mix ratios were to be used to 

produce 70 prototype concrete cube. Fifteen (35) out of the 70 mix ratios were as control mix 
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ratios to produce 35 cubes for the conformation of the adequacy of the mixture design given 

by the Eqn. (19). Curing commenced 24hours after moulding. The specimens were removed 

from the moulds and were placed in clean water for curing. After 28days of curing the 

specimens were taken out of the curing tank. 

3.2.2. COMPRESSIVE STRENGTH TEST 

Testing was conducted immediately after the specimen was removed from the curing process 

and dried. Smooth surface metal plate (serving as base plate) was placed at the bottom and 

top of each of the specimen cube so as to ensure uniform distribution of load for accurate 

crushing. Two samples were crushed for each mix ratio. The compressive strength was then 

calculated using the formula below: 

             Compressive Strength = Average failure Load (N)            P                                    (45)                         

                    Cross- sectional Area (mm2)       A 

4. RESULTS AND DISCUSSION   

4.1. COMPRESSIVE STRENGTH AND BULK DENSITY TEST RESULTS 

The results of the compressive strength (Response, Yi) based on a 28-days strength is presented 

in Table 3. These were calculated from Eqn.(45) 

Table 3: 28th Day Compressive Strength Values and their Corresponding Densities for 

the Initial Experimental Tests. 

Response 

Symbol 

Replicate  Average 

weight 

(KN) 

Volume 

(M3) 

Average 

bulk 

density  

Crushing 

load (KN) 

Cross 

sectional 

area 

(MM2) 

Strength 

(Nmm2) 

Average 

strength 

(Nmm2) 

Y1 A 

B 

C 

 

8.50 

 

0.003375 

 

2519 

342 

390 

408 

 

22500 

15.20 

17.33 

18.13 

 

16.89 

Y2 A 

B 

C 

 

8.34 

 

0.003375 

 

2471 

384 

348 

350 

 

22500 

17.07 

15.47 

15.56 

 

16.03 

Y3 A 

B 

C 

 

8.13 

 

0.003375 

 

2409 

300 

380 

350 

 

22500 

13.33 

16.89 

15.56 

 

15.26 

Y4 A 

B 

C 

 

8.54 

 

0.003375 

 

2542 

478 

461 

405 

 

22500 

21.25 

20.47 

18.00 

 

19.91 

Y5 A 

B 

C 

 

8.51 

 

0.003375 

 

2533 

486 

480 

360 

 

22500 

2160 

21.34 

16.00 

 

19.65 

Y112 A 

B 

B 

 

8.25 

 

0.003375 

 

2444 

380 

360 

340 

 

22500 

16.89 

16.00 

15.11 

 

16.00 

Y122 A 

B 

C 

 

8.25 

 

0.003375 

 

2444 

 

300 

350 

320 

 

22500 

 

13.33 

15.56 

14.22 

 

14.37 
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Y122 A 

B 

C 

 

8.08 

 

0.003375 

 

2415 

342 

348 

336 

 

22500 

15.20 

15.47 

14.93 

 

15.20 

 

Y133 A 

B 

C 

 

8.22 

 

0.003375 

 

2436 

320 

330 

380 

 

22500 

14.22 

14.67 

16.89 

 

15.26 

Y114 A 

B 

C 

 

8.30 

 

0.003375 

 

2436 

350 

300 

295 

 

22500 

15.56 

13.33 

13.11 

 

14.00 

Y144 A 

B 

C 

 

8.24 

 

0.003375 

 

2444 

300 

348 

354 

 

22500 

13.32 

15.47 

15.73 

 

14.84 

Y115 A 

B 

C 

 

8.22 

 

0.003375 

 

2436 

384 

390 

360 

 

22500 

17.06 

17.33 

16.00 

16.80 

Y155 A 

B 

C 

 

8.64 

 

0.003375 

 

2560 

360 

466 

432 

 

22500 

16.00 

20.78 

19.20 

 

18.06 

Y223 A 

B 

C 

 

8.10 

 

0.003375 

 

2400 

312 

360 

300 

 

22500 

13.87 

16.00 

13.33 

 

14.40 

Y233 A 

B 

C 

 

8.32 

 

0.003375 

 

2465 

336 

390 

360 

 

22500 

14.93 

17.34 

16.00 

 

16.09  

Y224 A 

B 

C 

 

8.30 

 

0.003375 

 

2459 

340 

380 

400 

 

22500 

15.11 

16.89 

17.78 

16.59 

Y244 A 

B 

C 

 

8.34 

 

0.003375 

 

2471 

350 

345 

300 

 

22500 

15.56 

15.33 

13.33 

 

14.74 

Y225 A 

B 

C 

 

8.22 

 

0.003375 

 

2436 

 

360 

385 

380 

 

22500 

15.56 

15.33 

13.33 

 

16.67 

Y255 A 

B 

C 

 

8.50 

 

0.003375 

 

2518 

485 

495 

493 

 

22500 

 

21.55 

22.00 

21.91 

 

21.82 

Y334 A 

B 

C 

 

8.48 

 

0.003375 

 

2512 

490 

470 

365 

 

22500 

21.78 

20.89 

16.22 

 

19.63 

Y344 A 

B 

C 

 

8.36 

 

0.003375 

 

2477 

380 

365 

345 

 

22500 

16.89 

16.22 

15.33 

 

16.15 

Y335 A 

B 

C 

 

8.10 

 

0.003375 

 

2400 

345 

350 

335 

 

22500 

15.32 

15.36 

14.89 

 

15.26 
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Y355 A 

B 

C 

 

8.33 

 

0.003375 

 

2221 

300 

348 

350 

 

22500 

13.32 

15.47 

15.56 

 

14.78 

Y445 A 

B 

C 

 

8.25 

 

0.003375 

 

2444 

385 

370 

360 

 

22500 

17.11 

16.44 

16. 

 

16.52 

Y455 A 

B 

C 

 

8.28 

 

0.003375 

 

2453 

380 

400 

375 

 

22500 

16.89 

17.78 

16.67 

 

17.11 

Y123 A 

B 

C 

 

8.35 

 

0.003375 

 

2474 

390 

385 

395 

 

22500 

17.33 

17.11 

17.56 

 

17.33 

Y124 A 

B 

C 

 

8.52 

 

0.003375 

 

2524 

390 

420 

400 

 

22500 

17.33 

18.67 

17.78 

 

17.93 

Y125 A 

B 

C 

 

8.49 

 

0.003375 

 

2515 

370 

385 

390 

 

22500 

16.44 

17.11 

17.33 

 

16.96 

Y134 A 

B 

C 

 

8.40 

 

0.003375 

 

2488 

365 

380 

375 

 

22500 

16.22 

16.89 

16.67 

 

16.59 

Y135 A 

B 

C 

 

8.43 

 

0.003375 

 

2498 

368 

390 

380 

 

22500 

16.36 

17.33 

17.51 

 

16.86 

Y145 A 

B 

C 

 

8.47 

 

0.003375 

 

2509 

400 

382 

394 

 

22500 

17.78 

16.98 

17.11 

 

17.43 

Y234 A 

B 

C 

 

8.53 

 

0.003375 

 

2527 

420 

382 

385 

 

22500 

18.67 

16.98 

17.11 

 

17.59 

Y235 A 

B 

C 

 

8.56 

 

0.003375 

 

2536 

410 

390 

395 

 

22500 

18.22 

17.33 

17.56 

 

17.70 

Y245 A 

B 

C 

 

8.58 

 

0.003375 

 

2542 

400 

420 

395 

 

22500 

17.78 

18.67 

17.56 

 

18.00 

Y345 A 

B 

C 

 

8.62 

 

0.003375 

 

2554 

410 

400 

425 

 

22500 

18.22 

17.78 

18.89 

 

18.29 

4.2 EXPERIMENTAL (CONTROL) TEST RESULT 

Table 4 shows the 28th day Compressive strength values and their corresponding density for 

the Control Test Experimental tests. 
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Table 4: 28TH Day Compressive Strength Value and their corresponding Density for the 

Control Test Experimental Tests. 

Response 

Symbol 

Replicate  Average 

weight 

(KN) 

Volume 

(M3) 

Average 

bulk 

density  

Crushing 

load 

(KN) 

Cross 

sectional 

area 

(MM2) 

Strength 

(Nmm2) 

Average 

strength 

(Nmm2) 

C1 A 

B 

C 

8.79 0.003375 26.04 364 

465 

419 

22500 19.18 18.48 

C2 A 

B 

C 

8.15 0.003375 2415 428 

387 

385 

22500 18.00 

17.20 

16.1 

17.10 

C3 A 

B 

C 

8.45 0.003375 2504 338 

423 

388 

22500 18.02 

15.81 

17.23 

17.02 

C4 A 

B 

C 

8.19 0.003375 2427 549 

460 

378 

22500 19.41 

20.46 

21.81 

20.56 

C5 A 

B 

C 

8.01 0.003375 2373 457 

412 

506 

22500 26.25 

21.30 

19.50 

20.35 

C112 A 

B 

C 

8.25 0.003375 2444 407 

385 

431 

22500 18.07 

17.12 

19.17 

18.12 

C122 A 

B 

C 

7.89 0.003375 2338 348 

408 

414 

22500 15.48 

18.13 

18.38 

17.33 

C113 A 

B 

C 

8.19 0.003375 2427 342 

403 

362 

22500 15.20 

17.90 

16.10 

16.40 

C133 A 

B 

C 

8.07 0.003375 2391 397 

347 

375 

22500 1565 

17.60 

16.45 

16.56 

C114 A 

B 

C 

8.25 0.003375 2444 389 22500 17.30 

14.00 

14.20 

15.20 

C144 A 

B 

C 

8.01 0.003375 2373 397 

347 

375 

22500 15.65 

16.45 

17.65 

16.56 

C115 A 

B 

C 

8.07 0.003375 2391 410 

401 

407 

22500 18.22 

18.80 

17.10 

18.04 
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C155 A 

B 

C 

8.49 0.003375 2516 475 

437 

408 

22500 21.10 

19.44 

18.13 

19.56 

C223 A 

B 

C 

7.97 0.003375 2361 349 

399 

300 

22500 16.50 

14.73 

15.33 

15.52 

 

C233 A 

B 

C 

8.01 0.003375 2373 437 

367 

365 

22500 19.40 

16.30 

16.20 

17.30 

C224 A 

B 

C 

8.02 0.003375 2376 458 

365 

408 

22500 19.36 

17.20 

18.13 

18.23 

C244 A 

B 

C 

8.23 0.003375 2439 338 

403 

316 

22500 16.50 

15.40 

15.05 

15.65 

C225 A 

B 

C 

7.98 0.003375 2364 360 

386 

452 

22500 18.00 

19.15 

16.10 

17.75 

C255 A 

B 

C 

8.15 0.003375 2415 371 

318 

417 

22500 15.50 

15.13 

11.54 

16.39 

C334 A 

B 

C 

8.21 0.003375 2433 441 

320 

4141 

22500 19.60 

14.20 

18.40 

17.40 

C344 A 

B 

C 

799 0.003375 2367 360 

404 

448 

22500 18.03 

17.93 

17.90 

17.95 

C344 A 

B 

C 

7.99 0.003375 2367 360 

404 

448 

22500 18.03 

17.93 

17.90 

17.95 

C335 A 

B 

C 

7.89 0.003375 2338 420 

344 

347 

22500 18.65 

15.30 

15.40 

16.45 

C355 A 

B 

C 

8.14 0.003375 2412 339 

388 

423 

22500 15.07 

17.23 

15.23 

15.88 

C445 A 

B 

C 

8.29 0.003375 2456 383 

448 

385 

22500 17.03 

19.93 

17.10 

18.02 

C455 A 

B 

C 

8.18 0.003375 2424 446 

419 

389 

22500 19.81 

18.60 

17.27 

18.56 
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4.3 REGRESSION EQUATION FOR COMPRESSIVE STRENGTH 

From Eqns. (20) through (37) and Table 3, the coefficients of the Scheffe’s third degree 

polynomial were determined as follows:  

1 = 16.89; 2 = 14.93; 3 = 16.80; 4 = 19.91; 5 = 19.65;  

12 = - 3.74; 13 =- 13.65; 14 = - 3.11; 15 = - 7.33; 23 = -1.8; 24 =-10.37; 25 = 3.11; 34 

= 1.37; 35 =- 10.96; 45 =- 13.34; 12 = 90.25; 13 = 201.94; 14 = 198.2;  15 = 90.25; 23 = 

2-4.07; 24 = 220.21; 25 = 258.3; 34= 2.51.98; 35 = 212.65; 45 = 226.42; 123 = -40; 124 

=-5.79; 125 = 131.84; 134 = -35.60; 135 = -75.95; 145 = - 61.02; 234= -69; 235 = - 66.21; 

245 = -82.53; 345 = - 55.04.                                                                                                (46) 

C123 A 

B 

C 

8.28 0.003375 2453 441 

367 

448 

22500 19.60 

16.30 

19.90 

18.60 

C124        A 

       B 

       C 

8.00 0.003375 2370 385 

410 

471 

22500 17.10 

18.20 

20.95 

18.75 

C125 A 

B 

C 

8.16 0.003375 2418 363 

410 

433 

22500 16.12 

18.20 

19.26 

17.86 

C134 A 

B 

C 

8.39 0.003375 2486 423 

396 

366 

22500 16.25 

18.79 

17.58 

17.54 

C135 A 

B 

C 

8.40 0.003375 2489 351 

423 

421 

22500 15.62 

18.70 

18.78 

17.70 

C145 A 

B 

C 

8.41 0.003375 2492 471 

385 

394 

22500 19.55 

18.10 

17.40 

18.35 

C234 A 

B 

C 

8.08 0.003375 2394 468 

392 

393 

22500 20.80 

17.40 

17.45 

18.55 

C235 A 

B 

C 

8.10 0.003375 2400 383 

423 

468 

22500 17.00 

18.80 

20.90 

18.90 

C245 A 

B 

C 

8.13 0.003375 2409 458 

458 

386 

22500 20.35 

20.25 

17.15 

19.25 

C345 A 

B 

C 

8.43 0.003375 2498 385 

477 

478 

22500 18.12 

20.18 

21.25 

19.85 
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Substituting the values of these coefficients in Eqn.(46) into Eqn. (19), yields the 

mathematical model for the optimization of the compressive strength of the concrete cubes 

made using glass fibre (GFRC) based on Scheffe’s (5,3) polynomial. 

4.4    VALIDATION AND TEST OF ADEQUACY OF THE MODEL 

The model was analyzed statistically using Fisher test  and the adequacy of the model was 

tested against the experimental results of the control points. The predicted values (Y(predicted)) 

for the test control points were obtained by substituting the values of Xi into the Scheffe’s 

(5,3)  Polynomial Model  Equation i.e. Revised Eqn. (19). These values were compared with 

the experimental result (Y(observed)) given in Table 3 and there is no significant difference 

between the model experimental result and the theoretical expected result. Thus, the model is 

adequate. 

4.5. COMPARISON BETWEEN   SCHEFFE’S SECOND DEGREE (5,2) AND THIRD 

DEGREE (5,3)   

POLYNOMIAL MODELS   

The table of comparison is shown in Table 5. 

Table 5: Table of Comparison of the 28th Compressive Strength Values 

Expt. 

No. 

Scheffe’s (5,2)  

 Polynomial model 

(Nwachukwu & others(2017)) 

Scheffe’s (5,3)   

 Polynomial 

 model 

(Present study) 

 

Percentage 

Difference 

Response 

Symbol 

Average 

Strength 

(Nmm-2) 

Response 

Symbol 

Average 

Strength 

(Nmm-2) 

1. Y1 16.89 Y1 16.89 0.000 

2. Y2 14.93 Y2 16.03 0.011 

3. Y3 16.80 Y3 15.26 0.015 

4. Y4 19.91 Y4 19.91 0.000 

5. Y5 19.65 Y5 19.65 0.000 

6. Y12 16.09 Y112 16.00 0.001 

7. Y13 20.71 Y113 14.37 0.063 

8. Y14 15.20 Y122 15.20 0.000 

9. Y15 16.09 Y133 15.26 0.009 

10. Y23 13.51 Y114 14.00 0.005 

11. Y24 14.84 Y144 14.84 0.000 

12. Y25 16.80 Y115 16.80 0.000 

13. Y34 18.66 Y155 18.06 0.006 

14. Y35 14.40 Y223 14.40 0.000 

15. Y45 16.09 Y233 16.09 0.000 

16.   Y224 16.59 0.022 

17.   Y244 14.74 0.147 

18.   Y225 16.67 0.167 

19.   Y255 21.82 0.218 
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20.   Y334 19.63 0.196 

21.   Y344 16.15 0.162 

22.   Y335 15.26 0.153 

23.   Y355 14.78 0.148 

24.   Y445 16.52 0.165 

25.   Y455 17.11 0.171 

26.   Y123 17.33 0.173 

27.   Y124 17.93 0.179 

28.   Y125 16.96 0.170 

29.   Y134 16.59 0.166 

30.   Y135 16.86 0.169 

31.   145 17.43 0.174 

32.   Y234 17.59 0.176 

33.   Y235 17.70 0.177 

34.   Y245 18.00 0.180 

35.   Y345 18.29 0.183 

4.6.   DISCUSSION OF RESULTS 

 Using Scheffe’s (5,3) simplex model the values of the compressive strength were obtained. 

The model gave highest compressive strength of 21.82 Nmm-2 corresponding to mix ratio of 

0.7:1:1:1.8:1.2 for water, cement, fine and coarse aggregate and glass fibre respectively. The 

maximum strength using Scheffe’s (5,2) simplex model was obtained as 20.71Nmm-2 

corresponding to mix ratio of 0.59:1:1.45:1.85:0.75.  The maximum strength values from 

both models were greater than the minimum value specified by the American Concrete 

Institute for the compressive strength of good concrete. Using the model, compressive 

strength of all points in the simplex can be derived.  

5.  CONCLUSION AND RECOMMENDATION 

5. 1.  CONCLUSION  

Scheffe’s third degree polynomial (5,3) was used to formulate a model for predicting the 

compressive strength of  GFRC cubes. This model could predict the compressive strength of 

the GFRC concrete cubes if the mix ratios are known and vice versa. The strengths predicted 

by the models were in good agreement with the corresponding experimentally observed 

results. The optimum attainable compressive strength predicted by the Scheffe’s (5,3) model 

at the 28th day was 21.82 N/mm2. .When compared with optimum attainable compressive 

strength predicted by the Scheffe’s (5,2)  model, given as 20.71 N/mm2 by Nwachukwu and 

others (2017), it can be deduced that the strength predicted  by Scheffe’s (5,3) model is 

slightly higher than that by Scheffe’s (5,2) model. However, the strength predicted by both 

models meet the minimum standard requirement stipulated by American Concrete Institute of 

20N/mm2 for the compressive strength. With the model, any desired strength of Glass Fibre 

Reinforced Concrete, given any mix proportions is easily evaluated. 
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5. 2.  RECOMMENDATION 

Though the maximum strength actualized is too low compared to other literatures it can also 

be said that if GFRC is used in the right form, it would produce the optimum strength 

required for good concrete. The audience are therefore advised to use optimized GFRC for 

construction purposes, especially light weight structures when economy and safety 

advantages are considered most. This is due to the fact that replacement of the conventional 

steel reinforcement with homogenous tiny strands of Alkaline Resistant (AR) glass fibre goes 

a long way to save cost, as steel reinforcements are more costly than glass fibres. 
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