American Journal of Computing and Engineering (AJCE)

Comparison Between Scheffe's Second Degree (5,2) And Third Degree $(5,3)$ Polynomial Models In The Optimization Of Compressive Strength Of Glass Fibre Reinforced Concrete (GFRC)
K. C. Nwachukwu, K.O. Njoku, P. O. Okorie, I.S. Akosubo, C. S. Uzoukwu, E.O. Ihemegbulem, and A.U. Igbojiaku
www.ajpojournals.org

Comparison Between Scheffe's Second Degree $(5,2)$ And Third Degree (5,3) Polynomial Models In The Optimization Of Compressive Strength Of Glass Fibre Reinforced Concrete (GFRC)

K. C. Nwachukwu ${ }^{1}$, K.O. Njoku 2, P. O. Okorie ${ }^{\mathbf{3}}$, I.S. Akosubo ${ }^{4}$, C. S. Uzoukwu ${ }^{5}$, E.O. Ihemegbulem ${ }^{6}$ and A.U. Igbojiaku ${ }^{7}$
${ }^{1,2,3,5,6,7}$ Department Of Civil Engineering, Federal University Of Technology, Owerri, Imo State, Nigeria
${ }^{4}$ Department of Civil Engineering, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
Corresponding author's Email: knwachukwu@ gmail.com

Abstract

Purpose: This research work aimed at formulating an optimization model based on Scheffe's Third Degree Polynomial $(5,3)$ that can be used to optimize the compressive strength of Glass Fibre Reinforced Concrete (GFRC), which is then compared to Scheffe's Second Degree Polynomial $(5,2)$ formulation developed by Nwachukwu and others (2017) . Methodology: Using Scheffe's Simplex method, the compressive strength of GFRC was determined for different ratios. Control experiments were also carried out and the compressive strength determined. After the tests have been conducted, the adequacy of the model was tested using fisher's f-test and the result of the test shows a good correlation between the model and control results.

Findings: Optimum compressive strength for the Scheffe's $(5,3)$ model was obtained as $21.82 \mathrm{~N} / \mathrm{mm}^{2}$. This is slightly higher than the optimum compressive strength for Scheffe's $(5,2)$ model which was obtained as $20.71 \mathrm{~N} / \mathrm{mm}^{2}$ by Nwachukwu and others (2017). Since structural concrete elements are generally made with concrete having a compressive strength of 20 to 35 MPa (or 20 to $35 \mathrm{~N} / \mathrm{mm}^{2}$), it then means that optimized GFRC based on both Scheffe's models can produce the required compressive strength needed in major construction projects such as bridges and light-weight structures. Recommendations: Major stakeholders in the construction industry are therefore advised to use optimized GFRC as it is far cheaper and still possess the required strength needed for construction works.

Keywords: GFRC, Scheffe's $(5,3)$ Polynomial Model, Optimization, Compressive strength ,Regression

1. INTRODUCTION

An optimization problem is one requiring the determination of the optimal (maximum or minimum) value of a given function, called the objective function, subject to a set of stated restrictions, or constraints placed on the variables concerned. Every optimization problem requires an objective which might be to maximize profit or benefit, to minimize cost or to minimize the use of material resources. Optimization of the concrete mixture design is a process of search for a mixture for which the sum of the costs of the ingredients is lowest, yet satisfying the required performance of concrete, such as workability, strength and durability. Scheffe's Polynomial Models are examples of optimization models. In this study, Scheffe's Third Degree Polynomial for five components mixtures (namely cement, fine aggregate, coarse aggregate, water and glass fibre), simply stated as Scheffe's $(5,3)$ polynomial model is developed.

In general, concrete is a very important material widely used in construction since ancient time. Concrete is of no doubt an important building material. According to Neville (1990), concrete plays a crucial part in all building structures owing to its numerous advantages which ranges from low built in fire resistance, high compressive strength to low maintenance. At the same time, it also has a major disadvantage which is that concrete is inherently a brittle material. Also, concrete is known for its problem associated with its low tensile strength compared to its compressive strength. As a result of this, many new technologies of concrete and some modern concrete specification approach were introduced. One of the technologies introduced for concrete was the addition of steel bars to reinforce its tension zone. This enables concrete gain an amount of tensile strength and thus reducing its brittle nature. Over the years the reinforcement (usually steel bars) has been replaced with other materials like glass fibre to further increase both its tensile strength and compressive strength and also, produce light weighted reinforced concrete unlike when reinforced with steel bars. Concrete's compressive strength is one of the most useful properties of concrete and in most structural applications, concrete primarily resists compressive stress.
Glass Fibre Reinforced Concrete (GFRC) is concrete mixture where the conventionally steel reinforcement in concrete production is replaced with a homogenous tiny strands of Alkaline Resistant (AR) glass fibre. Although GFRC has a similar density as concrete the product from it are 75% lighter due to the thin $10-15 \mathrm{~mm}$ skin thickness used. For instance, a cladding panel manufactured from 100 mm thick precast concrete would weigh $240 \mathrm{~kg} / \mathrm{m}^{2}$ compared to a similar GFRC panel of $40-50 \mathrm{~kg} / \mathrm{m}^{2}$. GFRC can last as long as pre-cast concrete and can perform better when exposed to harsh or severe weather conditions due to absence of steel reinforcement that has the tendency to corrode. By using glass fibre as the matrix bound by the cementitious adhesion, substantial increase in the flexural strength and impact strength are achieved without losing the superb aging properties of the concrete. The combination of cement, fine aggregate and glass fibre allows the homogenously reinforced part (GFRC) to be made much thinner than one with only intermittent reinforcement.
The present study therefore presents a formulation of an optimization model that will optimize the strength of GFRC. It focuses on the use of scheffe's third degree polynomial model to optimize the strength of GFRC. In recent years, many researchers have used Scheffe's method to carry out one form of optimization project or the other. For example, Nwakonobi and Osadebe (2008) used Scheffe's model to optimize the mix proportion of Clay- Rice Husk Cement Mixture for Animal Building. Ezeh and Ibearugbulem (2009) applied Scheffe's model to optimize the compressive cube strength of River Stone Aggregate

Vol.5, Issue 1, pp 1-23, 2022
www.ajpojournals.org

Concrete. Scheffe's model was used by Ezeh and others (2010a) to optimize the compressive strength of cement- sawdust Ash Sandcrete Block. Again Ezeh and others (2010b) optimized the aggregate composition of laterite/ sand hollow block using Scheffe's simplex method. The work of Ibearugbulem (2006) and Okere (2006) were also based on the use of Scheffe' mathematical model in the optimization of compressive strength of Perwinkle Shell- Granite Aggregate Concrete and optimization of the Modulus of Rupture of Concrete respectively. Obam (2009) developed a mathematical model for the optimization of strength of concrete using shear modulus of Rice Husk Ash as a case study. Rao and others (2011) investigated the effect of size and shape of specimen on compressive strength of GFRC. The work of Obam (2006) was based on four component mixtures, that is Scheffe's $(4,2)$ and Scheffe's $(4,3)$. That is to say, no work has been done on the use of Scheffe's method to optimize the compressive strength of GFRC except, the work by Nwachukwu and others (2017) which is based on Scheffe's Second Degree Polynomial. Henceforth, the need for this research work, whose results will be used to compare the work of Nwachukwu and others (2017). The Scheffe's theory is very relevant that it could predict the compressive strength of the GFRC concrete cubes if the mix ratios are known and vice versa

2. DEVELOPMENT OF THE OPTIMIZATION MODEL USING SCHEFFE'S THIRD DEGREE POLYNOMIAL

According to Aggarwal (2002), a simplex lattice is a structural representation of lines joining the atoms of a mixture, and these atoms are constituent components of the mixture. For GFRC mixture, the constituent elements are the water, cement, fine aggregate (sand), coarse aggregate and glass fibre. Thus, a simplex of five-component mixture is a four-dimensional solid. According to Obam (2009), mixture components are subject to the constraint that the sum of all the components must be equal to 1 . That is:

$$
\begin{equation*}
X_{1}+X_{2}+X_{a}+\ldots+X_{q}=1 ; \quad \Rightarrow \sum_{\mathrm{i}=1}^{q} X_{\mathrm{i}}=1 \tag{1}
\end{equation*}
$$

Where $\mathrm{X}_{\mathrm{i}} \geq 0$ and $i=1,2,3 \ldots \mathrm{q}$, and $\mathrm{q}=$ the number of mixtures

2.1 THE SIMPLEX LATTICE DESIGN

The (q, m) simplex lattice design are characterized by the symmetric arrangements of points within the experimental region and a well chosen polynomial equation to represent the response surface over the entire simplex region (Aggarwal, 2002). The (q, m) simplex lattice design given by Scheffe, according to Nwakonobi and Osadebe (2008) contains ${ }^{q+m-1} \mathrm{C}_{\mathrm{m}}$ points where each components proportion takes $(\mathrm{m}+1)$ equally spaced values $X_{i}=0, \frac{1}{m}, \frac{2}{m}, \frac{3}{m}, \ldots, 1 ; i=1,2, \ldots, q$ ranging between 0 and 1 and all possible mixture with these component proportions are used, and m is scheffe's polynomial degee, which in this present study is 3 .
For example a $(3,2)$ lattice consists of ${ }^{3+2-1} \mathrm{C}_{2}$ i.e. ${ }^{4} \mathrm{C}_{2}=6$ points. Each X_{1} can take $\mathrm{m}+1=3$ possible values; that is $x=0, \frac{1}{2}, 1$ with which the possible design points are: $(1,0,0),(0,1,0),(0,0,1),\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.
According to Obam (2009), a Scheffe's polynomial function of degree, m in the q variable $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4} \ldots \mathrm{X}_{\mathrm{q}}$ is given in form of:
$\mathrm{Y}=\mathrm{b}_{0}+\sum b \mathrm{t} \mathrm{x}+\sum b \mathrm{t} j x \mathrm{j}+\sum b \mathrm{t} j x j x k++\sum b \mathrm{t}^{\mathrm{j}}+\ldots \mathrm{t}_{\mathrm{n}} x \mathrm{t}_{2} x \mathrm{t}_{\mathrm{n}}$
www.ajpojournals.org
where ($1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{k} \leq \mathrm{q}, 1 \leq \mathrm{i}_{1} \leq \mathrm{i}_{2} \leq \ldots \leq \mathrm{i}_{\mathrm{n}} \leq \mathrm{q}$ respectively) , $\mathrm{b}=$ constant coefficients and Y is the response which represents the property under study, which ,in this case is the compressive strength.

This research work was based on the $(5,3)$ simplex hence the actual form of Eqn. (2) will be developed for $(5,3)$ lattice subsequently.

2.2. RELATIONSHIP BETWEEN PSEUDO AND ACTUAL COMPONENTS.

In Scheffe's mix design, the relationship between the pseudo components and the actual components is given as:
$\mathrm{Z}=\mathrm{A} * \mathrm{X}$
Where Z is the actual component; X is the pseudo component and A is the coefficient of the relationship
Re-arranging the equation
$\mathrm{X}=\mathrm{A}^{-1} * \mathrm{Z}$
In this research work a five component concrete mix constituents cement, river sand as fine aggregate, granite as coarse aggregate, water/cement (w/c) ratio and glass fibre were on focus. The space to use in the analysis will be ($\mathrm{q}-1$), which is equal to four dimensional factor spaces. A four dimensional factor space is an imaginary dimensional space (q, m) simplex lattice designs as shown in Fig. 1 for $(5,3)$ simplex lattice design.

Fig 1: Imaginary Space Showing Four-Dimensional Factor Space

Let $\mathrm{A}_{\mathrm{jk}}\left(\mathrm{X}_{\mathrm{ijk}}\right)$ designate arbitrary quantities of the five pseudo components of the mix at an arbitrary point on the factor space where A_{jk} is an arbitrary point on the factor space and $\mathrm{X}_{\mathrm{ijk}}$ is the arbitrary quantities of all pseudo components at X_{i} at an arbitrary point, A_{jk}. In general $\mathrm{X}_{\mathrm{ijk}}$ can take the form of:
$X_{\mathrm{ijk}}=\mathrm{X}_{1 \mathrm{jk}}, \mathrm{X}_{2 \mathrm{jk}}, \mathrm{X}_{3 \mathrm{jk}}, \mathrm{X}_{4 \mathrm{jk}}, \mathrm{X}_{5 \mathrm{jk}}$.
The quantities of the five pseudo components at the 35 points are as follows: each X_{i} can take $\mathrm{m}+1=3$ possible values i. $\mathrm{e}^{X_{\mathrm{i}}=0, \frac{1}{2}, 1}$. Then the possible design points, are:
$\mathrm{A}_{1}(1,0,0,0,0) ; \mathrm{A}_{2}(0,1,0,0,0) ; \mathrm{A}_{3}(0,0,1,0,0) ; \mathrm{A}_{4}(0,0,0,1,0), \mathrm{A}_{5}(0,0,0,0,1) ; \mathrm{A}_{112}(2 / 3.1 / 3,0$, $0,0,) ; \mathrm{A}_{122}=(1 / 2,2 / 3,0,0,0) ; \mathrm{A}_{113}(2 / 3,0,1 / 3,0,0) ; \mathrm{A}_{113}(2 / 3,0,1 / 3,0,0) ; \mathrm{A}_{133}(1 / 3,0,0$, $2 / 3,0,0) ; \mathrm{A}_{114}(2 / 3,0,0,1 / 3,0) ; \mathrm{A}_{114}(1 / 3,0,0,2 / 3,0) ; \mathrm{A}_{115},(2 / 3,0,0,0,1 / 3) ; \mathrm{A}_{115}(1 / 3$, $0,0,0,2 / 3) ; \mathrm{A}_{223}(0,2 / 3,1 / 3,0,0) ; \mathrm{A}_{223}(\mathrm{O}, 1 / 3,0,0) ; \mathrm{A}_{224}(0,02 / 3,0,1 / 3,0) ; \mathrm{A}_{224}(0,1 / 3,0$, $2 / 3,0)$; $\mathrm{A}_{225}(0,2 / 3,0,0,1 / 3) ; \mathrm{A}_{255}(0,1 / 3,0,0,2 / 3) ; \mathrm{A}_{334}(0,0,2 / 3,1 / 3,0) ; \mathrm{A}_{344}(0,0,1 / 3$, $2 / 3,0)$, A355 ($0,0,2 / 3,0,1 / 3$); A $355(0,0,1 / 3,0,2 / 3)$; A $445(0,0,0,2 / 3,1 / 3)$; A445 ($0,0,0,1 / 3$, $2 / 3) ; \mathrm{A}_{123}(1 / 3,1 / 3,1 / 3,0,0) ; \mathrm{A}_{124}(1 / 3,1,3,0,1 / 3,0) ; \mathrm{A}_{125}(1 / 3,1 / 3,0,0,1 / 3) ; \mathrm{A}_{134}(134(1 / 3$, $0,1 / 3,1 / 3,0) ; \mathrm{A}_{135}(1 / 3,0,1 / 3,0,1 / 3) ; \mathrm{A}_{145}(1 / 3,0,0,1 / 3,1 / 3) ; \mathrm{A}_{234}(0,1 / 3,1 / 3,1 / 3,0) ; \mathrm{A}_{235}$ $(0,1 / 3,1 / 3,0,1 / 3) ; \mathrm{A}_{245}(0,1 / 3,0,1 / 3,1 / 3) ; \mathrm{A}_{345}(0,0,1 / 3,1 / 3,1 / 3)$.

2.3. FORMULATION OF REGRESSION EQUATION FOR SCHEFFE'S (5, 3) LATTICE

The regression equation by Scheffe (1958), otherwise known as response is given as:
$\mathrm{f}(\mathrm{x})=\mathrm{Y}=\mathrm{b}^{0+} \sum b i x j+\sum b i x j+\sum b i j x i x j x k^{+} \sum b i^{\mathrm{i}_{2}}+\ldots \mathrm{i}_{\mathrm{n}} \mathrm{x} \mathrm{i}_{2} \times \mathrm{i}_{\mathrm{n}}$
Where $1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{k} \leq \mathrm{q}, 1 \leq \mathrm{i}_{1} \leq \mathrm{i}_{2} \leq \ldots \leq \mathrm{i}_{\mathrm{n}} \leq \mathrm{q}$ respectively
b_{0} is the arbitrary constant and y is the response, and this response is a polynomial function of pseudo component of the mix.

Hence, for Scheffe's (5,3) simplex lattice, the regression equation is derived from Eqn.(7) and given as follows:
$Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+b_{4} X_{4}+b_{5} X_{5}+b_{11} X_{1}^{2}+b_{12} X_{1} X_{2}+b_{13} X_{1} X_{3}+b_{14} X_{1} X_{4}+$ $b_{15} X_{1} X_{5}+b_{111} X_{1}^{3}+b_{112} X_{1}^{2} X_{2}+b_{113} X_{1}^{2} X_{3}+b_{114} X_{1}^{2} X_{4}+b_{115} X_{1}^{2} X_{5}+b_{22} X_{2}^{2}+b_{23} X_{2} X_{3}+$ $b_{24} X_{2} X_{4}+b_{25} X_{2} X_{5}+b_{222} X_{2}{ }^{3}+b_{223} X_{2}{ }^{2} X_{3}+b_{224} X_{2}{ }^{2} X_{4}+b_{225} X_{2}{ }^{2} X_{5}+b_{33} X_{3}{ }^{2}+b_{34} X_{3} X_{4}+$ $b_{35} X_{3} X_{5}+b_{333} X_{3}{ }^{3}+b_{334} X_{3}{ }^{2} X_{4}+b_{335} X_{3}{ }^{2} X_{5}+b_{44} X_{4}{ }^{2}+b_{45} X_{4} X_{5}+b_{444} X_{4}{ }^{3}+b_{445} X_{4}{ }^{2} X_{5}+$ $\mathrm{b}_{55} \mathrm{X}_{5}{ }^{2}+\mathrm{b}_{555} \mathrm{X}_{5}{ }^{3}$

Multiplying Eqn. (1) by bo yields Egn. (9)
$\mathrm{b}_{0}=\mathrm{b}_{0} \mathrm{X}_{1}+\mathrm{b}_{0} \mathrm{X}_{2}+\mathrm{b}_{0} \mathrm{X}_{3}+\mathrm{b}_{0} \mathrm{X}_{4}+\mathrm{b}_{0} \mathrm{X}_{5}$
By multiplying Eqn. (1) successively by $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}$ and X_{5} and re-arranging, we obtained Eqns. (10) - (14).

$$
\begin{align*}
X_{1}{ }^{2} & =X_{1}-X_{1} X_{2}-X_{1} X_{3}-X_{1} X_{4}-X_{1} X_{5} \tag{10}\\
X_{2}{ }^{2} & =X_{2}-X_{1} X_{2}-X_{2} X_{3}-X_{2} X_{4}-X_{2} X_{5} \tag{11}\\
X_{2}{ }^{2} & =X_{3}-X_{1} X_{3}-X_{2} X_{3}-X_{3} X_{4}-X_{3} X_{5} \tag{12}\\
X_{4}{ }^{2} & =X_{4}-X_{1} X_{4}-X_{2} X_{4}-X_{3} X_{4}-X_{4} X_{5} \tag{13}
\end{align*}
$$

$$
\begin{equation*}
X_{5}^{2}=\mathrm{X}_{5}-\mathrm{X}_{1} \mathrm{X}_{5}-\mathrm{X}_{2} \mathrm{X}_{5}-\mathrm{X}_{3} \mathrm{X}_{5}-\mathrm{X}_{4} \mathrm{X}_{5} \tag{14}
\end{equation*}
$$

Substituting Eqns.(9-14) into Eqn. (8) yields Eqn. (15)
$\mathrm{Y}=\mathrm{b}_{0} \mathrm{X}_{1}+\mathrm{b}_{0} \mathrm{X}_{2}+\mathrm{b}_{0} \mathrm{X}_{3}+\mathrm{b}_{0} \mathrm{X}_{4}+\mathrm{b}_{0} \mathrm{X}_{5}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3} \mathrm{X}_{3}+\mathrm{b}_{4} \mathrm{X}_{4}+\mathrm{b}_{5} \mathrm{X}_{5}+\mathrm{b}_{11}\left(\mathrm{X}_{1}-\mathrm{X}_{1} \mathrm{X}_{2}-\right.$ $\left.X_{1} X_{3}-X_{1} X_{4}-X_{1} X_{5}\right)+b_{12} X_{1} X_{2}+b_{13} X_{1} X_{3}+b_{14} X_{1} X_{4}+b_{15} X_{1} X_{5}+b_{111} X_{1}^{3}+b_{112}\left(X_{1}-X_{1} X_{2}-\right.$ $\left.X_{1} X_{3}-X_{1} X_{4}-X_{1} X_{5}\right) X_{2}+b_{113}\left(X_{1}-X_{1} X_{2}-X_{1} X_{3}-X_{1} X_{4}-X_{1} X_{5}\right) X_{3}+b_{114}\left(X_{1}-X_{1} X_{2}-X_{1} X_{3}-\right.$ $\left.\mathrm{X}_{1} \mathrm{X}_{4}-\mathrm{X}_{1} \mathrm{X}_{5}\right) \mathrm{X}_{4}+\mathrm{b}_{115}\left(\mathrm{X}_{1}-\mathrm{X}_{1} \mathrm{X}_{2}-\mathrm{X}_{1} \mathrm{X}_{3}-\mathrm{X}_{1} \mathrm{X}_{4}-\mathrm{X}_{1} \mathrm{X}_{5}\right) \mathrm{X}_{5}+\mathrm{b}_{22}\left(\mathrm{X}_{2}-\mathrm{X}_{1} \mathrm{X}_{2}-\mathrm{X}_{2} \mathrm{X}_{3}-\mathrm{X}_{2} \mathrm{X}_{4}-\right.$ $\left.\mathrm{X}_{2} \mathrm{X}_{5}\right)+\mathrm{b}_{23} \mathrm{X}_{2} \mathrm{X}_{3}+\mathrm{b}_{24} \mathrm{X}_{2} \mathrm{X}_{4}+\mathrm{b}_{25} \mathrm{X}_{2} \mathrm{X}_{5}+\mathrm{b}_{222} \mathrm{X}_{2}{ }^{3}+\mathrm{b}_{223}\left(\mathrm{X}_{2}-\mathrm{X}_{1} \mathrm{X}_{2}-\mathrm{X}_{2} \mathrm{X}_{3}-\mathrm{X}_{2} \mathrm{X}_{4}-\mathrm{X}_{2} \mathrm{X}_{5}\right.$) $X_{3}+b_{224}\left(X_{2}-X_{1} X_{2}-X_{2} X_{3}-X_{2} X_{4}-X_{2} X_{5}\right) X_{4}+b_{225}\left(X_{2}-X_{1} X_{2}-X_{2} X_{3}-X_{2} X_{4}-X_{2} X_{5}\right) X_{5}$ $+b_{33}\left(X_{3}-X_{1} X_{3}-X_{2} X_{3}-X_{3} X_{4}-X_{3} X_{5}\right)+b_{34} X_{3} X_{4}+b_{35} X_{3} X_{5}+b_{333} X_{3}{ }^{3}+b_{334}\left(X_{3}-X_{1} X_{3}-\right.$ $\left.\mathrm{X}_{2} \mathrm{X}_{3}-\mathrm{X}_{3} \mathrm{X}_{4}-\mathrm{X}_{3} \mathrm{X}_{5}\right) \mathrm{X}_{4}+\mathrm{b}_{335}\left(\mathrm{X}_{3}-\mathrm{X}_{1} \mathrm{X}_{3}-\mathrm{X}_{2} \mathrm{X}_{3}-\mathrm{X}_{3} \mathrm{X}_{4}-\mathrm{X}_{3} \mathrm{X}_{5}\right) \mathrm{X}_{5}+\mathrm{b}_{44}\left(\mathrm{X}_{4}-\mathrm{X}_{1} \mathrm{X}_{4}-\mathrm{X}_{2} \mathrm{X}_{4}\right.$ $\left.-X_{3} X_{4}-X_{4} X_{5}\right)+b_{45} X_{4} X_{5}+b_{444} X_{4}{ }^{3}+b_{445}\left(X_{4}-X_{1} X_{4}-X_{2} X_{4}-X_{3} X_{4}-X_{4} X_{5}\right) X_{5}+b_{55}\left(X_{5}-\right.$ $\left.\mathrm{X}_{1} \mathrm{X}_{5}-\mathrm{X}_{2} \mathrm{X}_{5}-\mathrm{X}_{3} \mathrm{X}_{5}-\mathrm{X}_{4} \mathrm{X}_{5}\right)+\mathrm{b}_{555} \mathrm{X}_{5}{ }^{3}$

Expanding Eqn. (15), we have
$Y=b_{0} X_{1}+b_{0} X_{2}+b_{0} X_{3}+b_{0} X_{4}+b_{0} X_{5}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+b_{4} X_{4}+b_{5} X_{5}+b_{11} X_{1}-$ $b_{11} X_{1} X_{2}-b_{11} X_{1} X_{3}-b_{11} X_{1} X_{4}-b_{11} X_{1} X_{5}+b_{12} X_{1} X_{2}+b_{13} X_{1} X_{3}+b_{14} X_{1} X_{4}+b_{15} X_{1} X_{5}+b_{111} X_{1}^{3}+$ $b_{112} X_{1} X_{2}-b_{112} X_{1} X_{2}^{2}-b_{112} X_{1} X_{2} X_{3}-b_{112} X_{1} X_{2} X_{4}-b_{112} X_{1} X_{2} X_{5}+b_{113} X_{1} X_{3}-b_{113} X_{1} X_{2} X_{3}-$ $b_{113} X_{1} X_{3}^{2}-b_{113} X_{1} X_{3} X_{4}-b_{113} X_{1} X_{3} X_{5}+b_{114} X_{1} X_{4}-b_{114} X_{1} X_{2} X_{4}-b_{114} X_{1} X_{3} X_{4}-b_{114} X_{1} X_{4}^{2}-$ $b_{114} X_{1} X_{4} X_{5}+b_{115} X_{1} X_{5}-b_{115} X_{1} X_{2} X_{5}-b_{115} X_{1} X_{3} X_{5}-b_{115} X_{1} X_{4} X_{5}-b_{115} X_{1} X_{5}^{2}+b_{22} X_{2}-$ $b_{22} X_{1} X_{2}-b_{22} X_{2} X_{3}-b_{22} X_{2} X_{4}-b_{22} X_{2} X_{5}+b_{23} X_{2} X_{3}+b_{24} X_{2} X_{4}+b_{25} X_{2} X_{5}+b_{222} X_{2}^{3}+b_{223} X_{2}$ $X_{3}-b_{223} X_{1} X_{2} X_{3}-b_{223} X_{2} X_{3}^{2}-b_{223} X_{2} X_{3} X_{4}-b_{223} X_{2} X_{3} X_{5}+b_{224} X_{2} X_{4}-b_{224} X_{1} X_{2} X_{4}-b_{224}$ $\mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}-\mathrm{b}_{224} \mathrm{X}_{2} \mathrm{X}_{4}^{2}-\mathrm{b}_{224} \mathrm{X}_{2} \mathrm{X}_{4} \mathrm{X}_{5}+\mathrm{b}_{225} \mathrm{X}_{2} \mathrm{X}_{5}-\mathrm{b}_{225} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{5}-\mathrm{b}_{225} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{5}-\mathrm{b}_{225} \mathrm{X}_{2} \mathrm{X}_{4} \mathrm{X}_{5}-$ $b_{225} X_{2} X_{5}^{2}+b_{33} X_{3}-b_{33} X_{1} X_{3}-b_{33} X_{2} X_{3}-b_{33} X_{3} X_{4}-b_{33} X_{3} X_{5}+b_{34} X_{3} X_{4}+b_{35} X_{3} X_{5}+b_{333} X_{3}{ }^{3}$ $+b_{334} X_{3} X_{4}-b_{334} X_{1} X_{3} X_{4}-b_{334} X_{2} X_{3} X_{4}-b_{334} X_{3} X_{4}^{2}-b_{334} X_{3} X_{4} X_{5}+b_{335} X_{3} X_{5}-b_{335} X_{1} X_{3}$ $X_{5}-b_{335} X_{2} X_{3} X_{5}-b_{335} X_{3} X_{4} X_{5}-b_{335} X_{3} X_{5}^{2}+b_{44} X_{4}-b_{44} X_{1} X_{4}-b_{44} X_{2} X_{4}-b_{44} X_{3} X_{4}-$ $b_{44} X_{4} X_{5}+b_{45} X_{4} X_{5}+b_{444} X_{4}^{3}+b_{445} X_{4} X_{5}-b_{445} X_{1} X_{4} X_{5}-b_{445} X_{2} X_{4} X_{5}-b_{445} X_{3} X_{4} X_{5}-b_{445} X_{4}$ $X_{5}^{2}+b_{55} X_{5}-b_{55} X_{1} X_{5}-b_{55} X_{2} X_{5}-b_{55} X_{3} X_{5}-b_{55} X_{4} X_{5}+b_{555} X_{5}^{3}$

Collecting like terms in Eqn. (16) yields Eqn. (17)
$\mathrm{Y}=\mathrm{X}_{1}\left[\mathrm{boo}+\mathrm{b}_{1}+\mathrm{b}_{11}\right]+\mathrm{X}_{2}\left[\mathrm{~b}_{0}+\mathrm{b}_{2}+\mathrm{b}_{22}\right]+\mathrm{X}_{3}\left[\mathrm{~b}_{0}+\mathrm{b}_{3}+\mathrm{b}_{33}\right]+\mathrm{X}_{4}\left[\mathrm{~b}_{0}+\mathrm{b}_{4}+\mathrm{b}_{4}\right]+\mathrm{X}_{5}\left[\mathrm{~b}_{0}\right.$ $\left.+b_{5}+b_{55}\right]+X_{1} X_{2}\left[b_{12}-b_{11}-b_{22}+b_{122}\right]+X_{1} X_{3}\left[b_{13}-b_{11}-b_{33}+b_{113}\right]+X_{1} X_{4}\left[b_{14}-b_{11}-\right.$ $\left.b_{44}+b_{114}\right]+X_{1} X_{5}\left[b_{15}-b_{11}-b_{55}+b_{115}\right]+X_{1}^{3}\left[b_{111}\right]+X_{1} X_{2}^{2}\left[-b_{112}\right]+X_{1} X_{3}^{2}\left[-b_{113}\right]+$ $\mathrm{X}_{1} \mathrm{X}_{4}^{2}\left[-\mathrm{b}_{114}\right]+\mathrm{X}_{1} \mathrm{X}_{5}^{2}\left[-\mathrm{b}_{115}\right]+\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}\left[-\mathrm{b}_{112}-\mathrm{b}_{113}-\mathrm{b}_{223}\right]+\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{4}\left[-\mathrm{b}_{112}-\mathrm{b}_{114}-\right.$ $\left.b_{224}\right]+X_{1} X_{2} X_{5}\left[-b_{112}-b_{115}-b_{225}\right]+X_{1} X_{3} X_{4}\left[-b_{113}-b_{114}-b_{334}\right]+X_{1} X_{3} X_{5}\left[-b_{113}-b_{115}\right.$ $\left.-b_{335}\right]+X_{1} X_{4} X_{5}\left[-b_{114}-b_{115}-b_{445}\right]+X_{2} X_{3}\left[b_{23}-b_{22}-b_{33}+b_{223}\right]+X_{2} X_{4}\left[b_{24}-b_{22}-b_{44}\right.$ $\left.+b_{224}\right]+X_{2} X_{5}\left[b_{25}-b_{22}-b_{55}+b_{225}\right]+X_{2}^{2}\left[b_{222}\right]+X_{2} X_{3}^{2}\left[-b_{223}\right]+X_{2} X_{4}{ }^{2}\left[-b_{224}\right]+$ $\mathrm{X}_{2} \mathrm{X}_{5}^{2}\left[-\mathrm{b}_{225}\right]+\mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}\left[-\mathrm{b}_{22}+\mathrm{b}_{224}-\mathrm{b}_{334}\right]+\mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{5}\left[-\mathrm{b}_{223}-\mathrm{b}_{225}-\mathrm{b}_{335}\right]+\mathrm{X}_{2} \mathrm{X}_{4} \mathrm{X}_{5}[-$ $\left.b_{224}-b_{225}-b_{445}\right]+X_{3} X_{4}\left[b_{34}-b_{33}-b_{44}+b_{334}\right]+X_{3} X_{5}\left[b_{35}-b_{33}-b_{55}+b_{335}\right]+X_{3}^{2}\left[b_{333}\right]$ $+X_{3} X_{4}^{2}\left[-b_{334}\right]+X_{3} X_{5}^{2}\left[-b_{335}\right]+X_{3} X_{4} X_{5}\left[-b_{334}-b_{335}-b_{445}\right]+X_{4} X_{5}\left[b_{45}-b_{44}-b_{55}+b_{445}\right.$ $]+\mathrm{X}_{4}^{2}\left[\mathrm{~b}_{444}\right]+\mathrm{X}_{4} \mathrm{X}_{5}^{2}\left[-\mathrm{b}_{445}\right]+\mathrm{X}_{5}^{2}\left[\mathrm{~b}_{555}\right]$
Let
$\left[b_{0}+b_{1}+b_{11}\right]=\beta_{1} ;\left[b_{0}+b_{2}+b_{22}\right]=\beta_{2} ;\left[b_{0}+b_{3}+b_{33}\right]=\beta_{3} ;\left[b_{0}+b_{4}+b_{44}\right]=\beta_{4} ;\left[b_{0}+b_{5}+\right.$ $\left.b_{55}\right]=\beta_{5} ;\left[b_{12}-b_{11}-b_{22}+b_{112}\right]=\beta_{12}$; $\left[b_{13}-b_{11}-b_{33}+b_{113}\right]=\beta_{13} ;\left[b_{14}-b_{14}-b_{11}-b_{44}+\right.$ $\left.\mathrm{b}_{114}\right\}=\beta_{14} ;\left[\mathrm{b}_{15}-\mathrm{b}_{11}-\mathrm{b}_{55}+\mathrm{b}_{115}\right]=\beta_{15} ;\left[-\mathrm{b}_{112}\right]=\gamma_{12} ;\left[-\mathrm{b}_{113}\right]=\gamma_{13} ;\left[-\mathrm{b}_{114}\right]=\gamma_{14} ;[-$ $\left.\mathrm{b}_{115}\right]=\gamma_{15} ;\left[-\mathrm{b}_{112}-\mathrm{b}_{113}-\mathrm{b}_{223}\right]=\beta_{123} ;\left[-\mathrm{b}_{112}-\mathrm{b}_{114}-\mathrm{b}_{224}\right]=\beta_{124} ;\left[-\mathrm{b}_{112}-\mathrm{b}_{115}-\mathrm{b}_{225}\right]=\beta_{125} ;[-$ $\left.b_{113}-b_{114}-b_{334}\right]=\beta_{134} ;\left[-b_{113}-b_{115}-b_{335}\right]=\beta_{135} ;\left[-b_{113}-b_{115}-b_{445}\right]=\beta_{145} ;\left[b_{23}-b_{22}-b_{33}+b_{223}\right.$
$]=\beta_{23} ;\left[b_{24}-b_{22}-b_{44}+b_{224}\right]=\beta_{24} ;\left[b_{25}-b_{22}-b_{55}+b_{225}\right]=\beta_{25} ;\left[-b_{223}\right]=\gamma_{23} ;\left[-b_{224}\right]=\gamma$
$24 ;\left[-b_{225}\right]=\gamma_{25} ;\left[-b_{223}-b_{224}-b_{334}\right]=\beta_{234} ;\left[-b_{223}-b_{225}-b_{335}\right]=\beta_{335} ;\left[-b_{224}-b_{225}-b_{445}\right]=\beta$
$245 ;\left[b_{34}-b_{33}-b_{44}+b_{334}\right]=\beta_{34} ;\left[b_{35}-b_{33}-b_{55}+b_{335}\right]=\beta_{35} ;\left[-b_{334}\right]=\gamma_{34} ;\left[-b_{335}\right]=\gamma_{35} ;[-$
$\left.b_{334}-b_{335}-b_{445}\right]=\beta_{345} ;\left[b_{45}-b_{44}-b_{55}+b_{445}\right]=\beta_{45} ;\left[-b_{445}\right]=\gamma_{45} ;$
Substituting Eqns.(18) into Eqn. (17) yields Eqn. (19)

$$
\begin{align*}
& Y=\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\beta_{5} X_{5}+\beta_{12} X_{1} X_{2}+\beta_{13} X_{1} X_{3}+\beta_{14} X_{1} X_{4}+\beta_{15} X_{1} X_{5}+\gamma \\
& 12 X_{1} X_{2}^{2}+\gamma_{13} X_{1} X_{3}^{2}+\gamma_{14} X_{1} X_{4}^{2}+\gamma_{15} X_{1} X_{5}^{2}+\beta_{123} X_{1} X_{2} X_{3}+\beta_{124} X_{1} X_{2} X_{4}+\beta_{125} X_{1} \\
& X_{2} X_{5}+\beta_{134} X_{1} X_{3} X_{4}+\beta_{135} X_{1} X_{3} X_{5}+\beta_{145 X_{1} X_{4} X_{5}+\beta_{23} X_{2} X_{3}+\beta_{24} X_{2} X_{4}+\beta_{25} X_{2} X_{5}+\gamma}{ }_{23} X_{2} X_{3}^{2}+\gamma_{24} X_{2} X_{4}^{2}+\gamma_{25} X_{2} X_{5}^{2}+\beta_{234} X_{2} X_{3} X_{4}+\beta_{235} X_{2} X_{3} X_{5}+\beta_{245} X_{2} X_{4} X_{5}+\beta_{34} X_{3} \\
& X_{4}+\beta_{35} X_{3} X_{5}+\gamma_{34} X_{3} X_{4}^{2}+\gamma_{35} X_{3} X_{5}^{2}+\beta_{345} X_{3} X_{4} X_{5}+\beta_{45} X_{4} X_{5}+\gamma_{45} X_{4} X_{5}^{2}
\end{align*}
$$

Equation (19) is the regression equation for Scheffe's $(5,3)$ simplex

2.4 .DETERMINATION OF THE COEFFICIENTS OF THE SCHEFFE'S (5, 3) POLYNOMIAL

Let $\mathrm{Y}_{\mathrm{i}}=$ response function for the pure component, i
Then, through expansion of the work of Obam (2006), it can be established that:
$\beta_{1}=\mathrm{Y}_{1} ; \beta_{2}=\mathrm{Y}_{2} ; \beta_{3}=\mathrm{Y}_{3} ; \beta_{4}=\mathrm{Y}_{4} ;$ and $\beta_{5}=\mathrm{Y}_{5}$
20(a-e)
$\beta_{12}=9 / 4\left(\mathrm{Y}_{112}+\mathrm{Y}_{122}-\mathrm{Y}_{1-} \mathrm{Y}_{2}\right) ; \beta_{13}=9 / 4\left(\mathrm{Y}_{113}+\mathrm{Y}_{133}-\mathrm{Y}_{1}-\mathrm{Y}_{3}\right) ; \beta_{14}=9 / 4\left(\mathrm{Y}_{114}+\mathrm{Y}_{144}-\mathrm{Y}_{1}-\mathrm{Y}_{4}\right)$ 21(a-c)
$\beta_{15}=9 / 4\left(\mathrm{Y}_{115}+\mathrm{Y}_{155}-\mathrm{Y}_{1}-\mathrm{Y}_{5}\right) ; \beta_{23}=9 / 4\left(\mathrm{Y}_{223}+\mathrm{Y}_{233}-\mathrm{Y}_{2}-\mathrm{Y}_{3}\right) ; \beta_{24}=9 / 4\left(\mathrm{Y}_{224}+\mathrm{Y}_{244}-\mathrm{Y}_{2}-\mathrm{Y}_{4}\right)$ 22(a-c) $\beta_{25}=9 / 4\left(\mathrm{Y}_{225}+\mathrm{Y}_{255}-\mathrm{Y}_{2}-\mathrm{Y}_{5}\right) ; \beta_{34}=9 / 4\left(\mathrm{Y}_{334}+\mathrm{Y}_{344}-\mathrm{Y}_{3}-\mathrm{Y}_{4}\right) ; \beta_{35}=9 / 4\left(\mathrm{Y}_{335}+\mathrm{Y}_{355}-\mathrm{Y}_{3}-\mathrm{Y}_{5}\right) \quad$ 23(a-c) $\beta_{45}=9 / 4\left(\mathrm{Y}_{445}+\mathrm{Y}_{455}-\mathrm{Y}_{4}-\mathrm{Y}_{5}\right) ; \gamma_{12}=9 / 4\left(3 \mathrm{Y}_{112}+3 \mathrm{Y}_{122}-\mathrm{Y}_{1}+\mathrm{Y}_{2}\right) ; \gamma_{13}=9 / 4\left(3 \mathrm{Y}_{113}+3 \mathrm{Y}_{133}-\mathrm{Y}_{1}+\mathrm{Y}_{3}\right)$ 24(a-c)
$\gamma_{14}=9 / 4\left(3 \mathrm{Y}_{114}+3 \mathrm{Y}_{144}-\mathrm{Y}_{1}+\mathrm{Y}_{4}\right) ; \gamma_{15}=9 / 4\left(3 \mathrm{Y}_{115}+3 \mathrm{Y}_{115}-\mathrm{Y}_{1}+\mathrm{Y}_{5}\right) ; \gamma_{23}=9 / 4\left(3 \mathrm{Y}_{223}+3 \mathrm{Y}_{233}-\mathrm{Y}_{2}+\mathrm{Y}_{3}\right)$
25(a-c)
$\gamma_{24}=9 / 4\left(3 \mathrm{Y}_{224}+3 \mathrm{Y}_{244}-\mathrm{Y}_{2}+\mathrm{Y}_{4}\right) ; \gamma_{25}=9 / 4\left(3 \mathrm{Y}_{225}+3 \mathrm{Y}_{255}-\mathrm{Y}_{2}+\mathrm{Y}_{5}\right) ; \gamma_{34}=9 / 4\left(3 \mathrm{Y}_{334}+3 \mathrm{Y}_{344} \mathrm{Y}_{3}\right.$
$\left.+\mathrm{Y}_{4}\right)$
$\gamma_{35}=9 / 4\left(3 \mathrm{Y}_{335}+3 \mathrm{Y}_{355}-\mathrm{Y}_{3}+\mathrm{Y}_{5}\right) ; \gamma_{45}=9 / 4\left(3 \mathrm{Y}_{445}+3 \mathrm{Y}_{455}-\mathrm{Y}_{4}+\mathrm{Y}_{5}\right)$
$\beta_{123}=27 \mathrm{Y}_{123}-27 / 4\left(\mathrm{Y}_{112}+\mathrm{Y}_{122}+\mathrm{Y}_{113}+133+\mathrm{Y}_{223}+\mathrm{Y}_{233}\right)+9 / 4\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}\right)$
$\beta_{124}=27 \mathrm{Y}_{124}-27 / 4\left(\mathrm{Y}_{112}+\mathrm{Y}_{122}+\mathrm{Y}_{114}+\mathrm{Y}_{144}+\mathrm{Y}_{224}+\mathrm{Y}_{244}\right)+9 / 4\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{4}\right)$
$\beta_{125}=27 \mathrm{Y}_{125}-27 / 4\left(\mathrm{Y}_{112}+\mathrm{Y}_{122}+\mathrm{Y}_{115}+\mathrm{Y}_{155}+\mathrm{Y}_{225}+\mathrm{Y}_{255}\right)+9 / 4\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{5}\right)$
$\beta_{134}=27 \mathrm{Y}_{134}-27 / 4\left(\mathrm{Y}_{113}+\mathrm{Y}_{133}+\mathrm{Y}_{114}+\mathrm{Y}_{144}+\mathrm{Y}_{334}+\mathrm{Y}_{344}\right)+9 / 4\left(\mathrm{Y}_{1}+\mathrm{Y}_{3}+\mathrm{Y}_{4}\right)$
$\beta_{135}=27 \mathrm{Y}_{135}-27 / 4\left(\mathrm{Y}_{113}+\mathrm{Y}_{133}+\mathrm{Y}_{115}+\mathrm{Y}_{155}+\mathrm{Y}_{335}+\mathrm{Y}_{355}\right)+9 / 4\left(\mathrm{Y}_{1}+\mathrm{Y}_{3}+\mathrm{Y}_{5}\right)$
$\beta_{145}=27 \mathrm{Y}_{145}-27 / 4\left(\mathrm{Y}_{114}+\mathrm{Y}_{144}+\mathrm{Y}_{115}+\mathrm{Y}_{155}+\mathrm{Y}_{445}+\mathrm{Y}_{455}\right)+9 / 4\left(\mathrm{Y}_{1}+\mathrm{Y}_{4}+\mathrm{Y}_{5}\right)$
$\beta_{234}=27 \mathrm{Y}_{234}-27 / 4\left(\mathrm{Y}_{223}+\mathrm{Y}_{233}+\mathrm{Y}_{224}+\mathrm{Y}_{244}+\mathrm{Y}_{334}+\mathrm{Y}_{344}\right)+9 / 4\left(\mathrm{Y}_{2}+\mathrm{Y}_{3}+\mathrm{Y}_{4}\right)$
$\beta_{235}=27 \mathrm{Y}_{235}-27 / 4\left(\mathrm{Y}_{223}+\mathrm{Y}_{233}+\mathrm{Y}_{225}+\mathrm{Y}_{255}+\mathrm{Y}_{335}+\mathrm{Y}_{355}\right)+9 / 4\left(\mathrm{Y}_{2}+\mathrm{Y}_{3}+\mathrm{Y}_{5}\right)$
$\beta_{245}=27 \mathrm{Y}_{245}-27 / 4\left(\mathrm{Y}_{224}+\mathrm{Y}_{244}+\mathrm{Y}_{225}+\mathrm{Y}_{255}+\mathrm{Y}_{445}+\mathrm{Y}_{455}\right)+9 / 4\left(\mathrm{Y}_{2}+\mathrm{Y}_{4}+\mathrm{Y}_{5}\right)$
$\beta_{345}=27 \mathrm{Y}_{345}-27 / 4\left(\mathrm{Y}_{334}+\mathrm{Y}_{344}+\mathrm{Y}_{335}+\mathrm{Y}_{355}+\mathrm{Y}_{445}+\mathrm{Y}_{455}\right)+9 / 4\left(\mathrm{y}_{1}+\mathrm{y}_{4}+\mathrm{y}_{5}\right)$
www.ajpojournals.org

2.5. MIX RATIO

Since the simplex operates in such a way that sum of all components must be one, it becomes impossible to use normal mix ratios such as 1:2:4 or 1:3:6. Rather transformation was carried out from actual to pseudo components. .

2.5.1. ACTUAL MIX RATIO

Based on past experience and literature, the arbitrary mix proportions prescribed for the vertices of the pentagon is shown in Fig.2.It is in the order of (W/C:C:F.A:C.A:G.F) which represents water/ cement ratio, cement, fine aggregate, coarse aggregate and glass fibre respectively
(0.75:1:1.3:1.2:1.5)

Fig. 2: Vertices of a $(5,3)$ lattice (actual)

2.5.2: PSEUDO MIX RATIO

From Eqn.(6), the corresponding pseudo mix ratios are shown in Fig. 3

ISSN 2520-0449 (Online)
www.ajpojournals.org

Fig. 3 vertices of a $(5,3)$ lattice (pseudo)

2.5.3. COMPONENTS TRANSFORMATION

If X represent the pseudo component and Z the actual components. For component transformation, Sheffes suggested the following equations:

$$
\begin{equation*}
\mathrm{X}=\mathrm{B} * \mathrm{Z} ; \quad \mathrm{Z}=\mathrm{A} * \mathrm{X} \tag{a-b}
\end{equation*}
$$

Where $\mathrm{A}=$ matrix whose elements are arbitrary mix proportions; $\mathrm{B}=$ the inverse of matrix A ; $\mathrm{Z}=$ matrix of the actual components and $\mathrm{X}=$ matrix of the pseudo component obtained from Fig. (3).

Considering a $(5,3)$ simplex lattice, it follows that there are five components in the mixture. Hence, Eqn. (38b) becomes:

$$
\left[\begin{array}{l}
\mathrm{Z}_{1} \tag{39}\\
\mathrm{Z}_{2} \\
\mathrm{Z}_{3} \\
\mathrm{Z}_{4} \\
\mathrm{Z}_{5}
\end{array}\right]=\left(\begin{array}{llll}
\mathrm{A}_{111} & \mathrm{~A}_{112} & \mathrm{~A}_{113} & \mathrm{~A}_{114} \\
\mathrm{~A}_{122} & \mathrm{~A}_{222} & \mathrm{~A}_{223} & \mathrm{~A}_{242} \\
\mathrm{~A}_{331} & \mathrm{~A}_{332} & \mathrm{~A}_{223} & \mathrm{~A}_{224} \\
\mathrm{~A}_{441} & \mathrm{~A}_{442} & \mathrm{~A}_{443} & \mathrm{~A}_{444} \\
\mathrm{~A}_{551} & \mathrm{~A}_{552} & \mathrm{~A}_{553} & \mathrm{~A}_{554}
\end{array}\right) \mathrm{A}_{115}\left(\begin{array}{l}
\mathrm{X}_{225} \\
\mathrm{~A}_{225}
\end{array} \mathrm{~A}_{455}\left(\mathrm{X}_{2}\right)\right.
$$

Substituting the mix ratios from point A (Figures 2 and 3) respectively into Eqn. (39), we obtain:
$\left[\begin{array}{c}0.67 \\ 1 \\ 1.7 \\ 2 \\ 0.5\end{array}\right)=\left(\begin{array}{lllll}\mathrm{A}_{111} & \mathrm{~A}_{112} & \mathrm{~A}_{113} & \mathrm{~A}_{114} & \mathrm{~A}_{115} \\ \mathrm{~A}_{221} & \mathrm{~A}_{222} & \mathrm{~A}_{223} & \mathrm{~A}_{224} & \mathrm{~A}_{225} \\ \mathrm{~A}_{331} & \mathrm{~A}_{332} & \mathrm{~A}_{333} & \mathrm{~A}_{334} & \mathrm{~A}_{335} \\ \mathrm{~A}_{441} & \mathrm{~A}_{442} & \mathrm{~A}_{443} & \mathrm{~A}_{444} & \mathrm{~A}_{445} \\ \mathrm{~A}_{551} & \mathrm{~A}_{552} & \mathrm{~A}_{553} & \mathrm{~A}_{554} & \mathrm{~A}_{555}\end{array}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\right.$

Transforming the R.H.S matrix and solving, we obtain
$\mathrm{A}_{111}=0.67 ; \mathrm{A}_{221}=1 ; \mathrm{A}_{331}=1.7 ; \mathrm{A}_{441}=2 ; \mathrm{A}_{551}=0.5$
The same approach is used to obtain the remaining values as shown in Eqn. (41)
$\left(\begin{array}{l}\mathrm{Z}_{1} \\ \mathrm{Z}_{2} \\ \mathrm{Z}_{3} \\ \mathrm{Z}_{4} \\ \mathrm{Z}_{5}\end{array}\right)=\left(\begin{array}{ccccc}0.67 & 0.56 & 0.5 & 0.7 & 0.75 \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\ 1.7 & 1.6 & 1.2 & 1.0 & 1.3 \\ 2.0 & 1.8 & 1.7 & 1.8 & 1.2 \\ 0.5 & 0.8 & 1.0 & 1.2 & 1.5\end{array}\right) \quad\left(\begin{array}{l}\mathrm{X}_{1} \\ \mathrm{X}_{2} \\ \mathrm{X}_{3} \\ \mathrm{X}_{4} \\ \mathrm{X}_{5}\end{array}\right)$

Considering mix ratios at the mid points from Eqn.(6) and substituting these pseudo mix ratios in turn into Eqn.(41) will yield the corresponding actual mix ratios.

For point A_{112}

$$
\left(\begin{array}{l}
\mathrm{Z}_{1} \tag{42}\\
\mathrm{Z}_{2} \\
\mathrm{Z}_{3} \\
\mathrm{Z}_{4} \\
\mathrm{Z}_{5}
\end{array}\right)=\left(\begin{array}{ccccc}
0.67 & 0.56 & 0.5 & 0.7 & 0.75 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
1.7 & 1.6 & 1.2 & 1.0 & 1.3 \\
2.0 & 1.8 & 1.7 & 1.8 & 1.2 \\
0.5 & 0.8 & 1.0 & 1.2 & 1.5
\end{array}\right) \quad\left(\begin{array}{l}
0.67 \\
0.33 \\
0 \\
0 \\
0
\end{array}\right)=\left\{\begin{array}{c}
0.63 \\
1 \\
1.67 \\
1.90 \\
1.60
\end{array}\right\}
$$

Solving, $\mathrm{Z}_{1}=0.63 ; \mathrm{Z}_{2}=1.00 ; \mathrm{Z}_{3}=1.67^{\prime} \mathrm{Z}_{4}=1.90 ; \mathrm{Z}_{5}=1.60$
The same approach goes for the remaining mid-point mix ratios
Hence, to generate the regression coefficients, 35 experimental tests were carried out and the corresponding mix ratios depicted in Table 1

American Journal of Computing and Engineering ISSN 2520-0449 (Online)

Vol.5, Issue 1, pp 1-23, 2022
www.ajpojournals.org

Table 1: Mix Ratio for the (5.3) Lattice

Point	Pseudo		Component			Response	Actual\mathbf{Z}_{1}	Component			
	X1	X_{2}	X3	X_{4}	X5			Z_{2}	Z_{3}	Z_{4}	Z5
1	1	0	0	0	0	Y_{1}	0.67	1.00	1.70	2.0	0.5
2	0	1	0	0	0	Y_{2}	0.56	1.00	1.60	1.8	0.8
3	0	0	1	0	0	Y_{3}	0.50	1.00	1.20	1.7	1.0
4	0	0	0	0	0	Y_{4}	0.70	1.00	1.00	1.8	1.2
5	0	0	0	0	1	Y_{5}	0.75	1.00	1.30	1.2	1.5
112	0.67	0.33	0	1	0	Y_{112}	0.63	1.00	1.67	1.9	1.6
122	0.33	0.67	0	0	0	Y_{122}	0.60	1.00	1.63	1.8	0.7
113	0.67	0	0.33	0	0	Y_{113}	0.61	1.00	1.54	1.9	0.6
133	0.33	0	0.67	0	0	Y_{113}	0.56	1.00	1.37	1.8	0.8
114	0.67	0	0	0.33	0	Y_{114}	0.68	1.00	1.47	1.9	0.7
144	0.33	0	0	0.67	0	Y_{144}	0.69	1.00	1.23	1.8	0.9
115	0.67	0	0	0	0.33	Y_{115}	0.70	1.00	1.57	1.7	0.8
155	0.33	0	0	0	0.67	Y_{115}	0.72	1.00	1.43	1.4	1.1
223	0	0.67	0.33	0	0	Y_{223}	0.55	1.00	1.40	1.7	0.8
233	0	0.33	0.67	0	0	Y_{233}	0.52	1.00	1.20	1.7	0.9
224	0	0.67	0	0.33	0	Y_{224}	0.61	1.00	1.67	1.8	0.9
244	0	0.33	0	0.67	0	Y 244	0.66	1.00	1.73	1.8	1.0
225	0	0.67	0	0	0.33	Y_{225}	0.63	1.00	1.50	1.6	0.7
255	0	0.33	0	0	0.67	Y_{255}	0.69	1.00	1.40	1.4	0.6
234	0	0	0.67	0.33	0	Y_{334}	0.57	1.00	1.13	1.7	1.0
344	0	0	0.33	0.67	0	Y_{344}	0.64	1.00	1.07	1.7	1.1
335	0	0	0.67	0	0.33	Y_{355}	0.58	1.00	1.23	1.5	1.1
355	0	0	0.33	0	0.67	Y_{335}	0.67	1.00	1.27	1.3	1.3
445	0	0	0	0	0.67	Y_{445}	0.72	1.00	1.10	1.6	1.3
455	0	0	0	0.67	0.33	Y_{445}	0.73	1.00	1.20	1.4	1.4
123	0.33	0.33	0.33	0	0	Y_{123}	0.57	1.00	1.49	1.8	0.7
124	0.33	0.33	0	0.33	0	Y_{124}	0.64	1.00	1.09	1.8	0.8
125	0.33	0.33	0	0	0.33	Y_{125}	0.66	1.00	1.52	1.6	0.9
134	0.33	0.33	0.33	0.33	0	Y_{134}	0.62	1.00	1.29	1.8	0.8
135	0.33	0	0.33	0.33	0.33	Y_{135}	0.63	1.00	1.39	1.6	0.9
145	0.33	0	0	0	0.33	Y_{145}	0.70	1.00	1.32	1.6	1.0
234	0	0	0.33	0.33	0	Y_{234}	0.58	1.00	1.25	1.7	0.9
235	0	0.33	0.33	0	0.33	Y_{235}	0.60	1.00	1.32	1.5	1.0
245	0	0.33	0	0.33	0.33	Y_{245}	0.67	1.00	1.29	1.5	1.1
345	0	0	0.33	0.33	0.33	Y_{345}	0.64	1.00	1.6	1.5	1.2

2.5.4. CONTROL POINTS

Thirty five (35) different controls were predicted which according to Scheffe's (1958), their summation should not be greater than one. They are:
C_{1} (0.25: 0.25: 0.25:0.25: 0); C_{2} (0.25:0.25: 0.25:0: 0.25); C_{3} (0.25:0.25:0.25:0.25); C_{4} (0.25:0.0.25: 0.25:0.25); $\mathrm{C}_{5}(0.0 .25: 0.25: 0.25: 0.25) ; \mathrm{C}_{112}(0.2: 0.2: 0.2: 0.2: 0.25) ; \mathrm{C}_{122}$ (0.3:

American Journal of Computing and Engineering ISSN 2520-0449 (Online)
Vol.5, Issue 1, pp 1-23, 2022
www.ajpojournals.org
0.3: 0.3: 0:0.1); C_{113} (0.3: 0.3: 0.3: 0:0.1); C_{133} (0.3:0.3:0.3:0.1); C_{114} (0.3:0: 0.3:0.3:0.1); C_{144} (0:0.3:0.3:0.3:0.1); $\mathrm{C}_{115}(0.1: 0.3: 0.3: 0.3: 0) ; ~ \mathrm{C}_{155}(0.3: 0.1: 0.3: 0.3: 0) ; ~ \mathrm{C}_{223}(0.3: 0.3: 0.1: 0.3: 0)$; $\mathrm{C}_{233}(0.1: 0.2: 0.3: 04: 0) ; \mathrm{C}_{224}\left(0.30: 0.20: 0: 0\right.$ 0.4:0); $\mathrm{C}_{244}(0.20: 0.20: 010: 0.10: 0.40) ; \mathrm{C}_{225}$ (0.30:0.10:0.30:0.20:0.10); C_{255} ($0.25: 0.25: 0.10: 0.15: 0.20$); C_{334} ($0.30: 0.30: 0.20: 0.20$: $0.10) ; \mathrm{C}_{344}(0.10: 0.30: 0.30: 0.30: 0)$; C_{335} (0.30: 0.30:0.20: $0.20: 0.20$); $\mathrm{C}_{355}(0.25: 0.15: 0.20$: 0.20:0.20); $\quad \mathrm{C}_{445}(0.10: 0.20: 0.30: 0.40: 0) ; \quad \mathrm{C}_{455}(0: 0.40: \quad 0.20: \quad 0.30: 0.10) ; \quad \mathrm{C}_{123}$ (0.25:0.10:0.40:0:0.25); C_{124} (0.30:0.20: 0.40:0.10,0); C_{135} (0.25:0.20:0.20:0.20:0.15); C_{134} (0.10:0.30:0 0.30:0.30); C_{135} (0.25:0.20: 0.20: 0.20: 0.15); C_{145} (0.10: 0.10: $0.10: 0.30:$ 0.40); C_{234} (0.40: 0.20: 0.10: 0.10: 0.30); C_{235} (0.25: 0.25: 0.15: 0.25: 0.10); C_{245} (0.15: 0.20 : 0.10:0.25:0.30); C_{345} (0.30: 0.10: 0.20: 0.25: 0.15);

Substituting these values into Eqn (41), gives the actual mixes values as follows:
For control point C_{1};
$\left(\begin{array}{l}\mathrm{Z}_{1} \\ \mathrm{Z}_{2} \\ \mathrm{Z}_{3} \\ \mathrm{Z}_{4} \\ \mathrm{Z}_{5}\end{array}\right)=\left(\begin{array}{lllll}0.67 & 0.56 & 0.5 & 0.7 & 075 \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\ 1.7 & 1.6 & 1.2 & 1.0 & 1.3 \\ 2.0 & 1.8 & 1.7 & 1.8 & 1.2 \\ 0.5 & 0.8 & 1.0 & 1.2 & 1.5\end{array}\right) \quad\left(\begin{array}{l}0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0\end{array}\right)=\left(\begin{array}{l}0.61 \\ 1.00 \\ 1.38 \\ 1.83 \\ 0.5\end{array}\right)$
(44)

The rest are shown in Table 2
Table 2: Actual and Pseudo Component of Scheffe $(5,3)$ Lattice for Control Points

Point	Pseudo		Component			Control Point	Actual		Component		
	X_{1}	X_{2}	X3	X_{4}	\%		\mathbf{Z}_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}
1	0.25	0.25	0.25	0.25	0	C_{1}	0.61	1	1.38	1.83	0.5
2	0.25	0.25	0.25	0	0.25	C_{2}	0.62	1	1.45	1.68	0.8
3	0.25	0.25	0	0.25	0.25	C_{3}	0.67	1	1.40	1.70	1
4	0.25	0	0.25	0.25	0.25	C_{4}	0.66	1	1.30	1.68	1.2
5	0	0.25	0.25	0.25	0.25	C_{5}	0.63	1	1.28	1.63	1.5
12	0.2	0.2	0.2	0.2	0.2	C_{112}	0.64	1	1.36	1.70	0.65
22	0.3	0.3	0.3	0.1	0	C_{122}	0.59	1	1.45	1.83	0.75
13	0.3	0.3	0.3	0	0.1	C_{113}	0.59	1	1.48	1.77	0.85
33	0.3	0.3	0	0.3	0.1	C_{133}	0.65	1	1.42	1.80	1
14	0.3	0	0.3	0.3	0.1	C_{114}	0.64	1	1.30	1.77	0.9
44	0	0.3	0.3	0.3	0.1	C_{144}	0.60	1	1.27	1.71	1
115	0.1	0.3	0.3	0.3	0	C_{155}	0.60	1	1.31	1.79	1.55
115	0.3	0.1	0.3	0.3	0	C_{155}	0.62	1	1.33	1.83	1.1
223	0.3	0.1	0.3	0.3	0	C_{223}	0.63	1	1.41	1.85	1.25
233	0.1	0.2	0.3	0.4	0	C_{233}	0.61	1	1.25	1.79	1.35
224	0.30	0.20	0.10	0.4	0	C_{224}	0.64	1	1.35	1.85	0.89
244	0.20	0.20	0.10	0.10	0.40	C_{244}	1.40	1	1.04	1.59	1.08
225	0.30	0.10	0.30	0.20	0.10	C_{225}	0.62	1	1.36	1.77	0.92
255	0.25	0.25	0.10	0.15	0.20	C_{255}	0.61	1	1.51	3.16	0.91
334	0.30	0.30	0.20	0.20	0.10	C334	0.68	1	1.56	1.96	0.98

Vol.5, Issue 1, pp 1-23, 2022
www.ajpojournals.org

$\mathbf{3 4 4}$	0.10	0.30	0.30	0.30	0	C_{344}	1.30	1	1.31	1.79	0.95
$\mathbf{3 3 5}$	0.30	0.15	0.20	0.20	0.20	C_{335}	0.65	1	0.96	1.05	0.97
$\mathbf{3 5 5}$	0.25	0.20	0.20	0.20	0.20	C_{355}	0.64	1	1.37	1.71	0.79
$\mathbf{4 4 5}$	0.10	0.20	0.30	0.40	0	C_{445}	0.61	1	1.25	1.79	0.99
$\mathbf{4 5 5}$	0	0.10	0.20	0.30	0.10	C_{455}	0.61	1	1.31	1.72	1.03
$\mathbf{1 2 3}$	0.25	0.10	0.40	0	0.25	C_{123}	0.61	1	1.39	1.66	0.98
$\mathbf{1 2 4}$	0.30	0.20	0.40	0.10	0	C_{124}	0.58	1	1.41	1.82	0.83
$\mathbf{1 2 5}$	0.15	0.15	0.20	0.10	0.40	C_{125}	0.65	1	1.36	1.57	1.11
$\mathbf{1 3 4}$	0.10	0.30	0	0.30	0.30	C_{134}	0.67	1	1.34	1.65	1.10
$\mathbf{1 3 5}$	0.25	0.20	0.20	0.20	0.15	C_{135}	0.74	1	1.38	2.08	0.88
$\mathbf{1 4 5}$	0.10	0.10	0.10	0.30	0.40	C_{145}	0.68	1	1.27	1.57	1.19
$\mathbf{2 3 4}$	0.40	0.20	0.10	0.10	0.30	C_{234}	0.73	1	1.61	1.87	1.03
$\mathbf{2 3 5}$	0.25	0.25	0.15	0.25	0.10	C_{235}	0.63	1	1.39	1.78	0.93
$\mathbf{2 4 5}$	0.15	0.20	0.10	0.25	0.30	C_{245}	0.66	1	1.34	1.64	1.09
$\mathbf{3 4 5}$	0.30	0.10	0.20	0.25	0.15	C_{345}	0.64	1	1.34	1.75	0.96
$\mathbf{1 5}$	0.3	0.3	0	0.3	0.1	C_{15}	0.65	1	1.42	1.80	1
$\mathbf{2 3}$	0.3	0	0.3	0.3	0.1	C_{23}	0.64	1	1.30	1.77	0.9
$\mathbf{2 4}$	0	0.3	0.3	0.3	0.1	C_{24}	0.60	1	1.27	1.71	1
$\mathbf{2 5}$	0.1	0.3	0.3	0.3	0	C_{25}	0.60	1	1.31	1.79	1.15
$\mathbf{3 4}$	0.3	0.1	0.3	0.3	0	C_{34}	0.62	1	1.33	1.83	1.1
$\mathbf{3 5}$	0.3	0.3	0.1	0.3	0	C_{35}	0.63	1	1.41	1.85	1.25
$\mathbf{4 5}$	0.1	0.2	0.3	0.4	0	C_{45}	0.61	1	1.25	1.79	1.35

The actual component as transformed from Eqn. (41) and Table (1) and (2) were used to measure out the quantities of water $\left(\mathrm{Z}_{1}\right)$, cement $\left(\mathrm{Z}_{2}\right)$, fine aggregate as sand $\left(\mathrm{Z}_{3}\right)$, coarse aggregate $\left(Z_{4}\right)$ and glass fibre $\left(Z_{5}\right)$ in their respective ratios for the concrete cube strength test.

3. MATERIALS AND METHODS

3.1 MATERIALS

The materials investigated are the mixture of cement, water, fine and coarse aggregate and glass fibre. The cement is Dangote cement, a brand of Ordinary Portland Cement, conforming to British Standard Institution BS 12 (1978). The fine aggregate, whose size ranges from 0.05 -4.5 mm was procured from the local river. Crushed granite of 20 mm size downgraded to 4.75 mm obtained from a local stone market was used in the experimental investigation .Also; Glass Fibre of alkali resistant type (CEM-FIL) was used in the experimental investigation and water drawn from the clean water source.

3.2. METHOD

3.2.1. SPECIMEN PREPARATION / BATCHING/ CURING

The specimens for the compressive strength were concrete cubes. They were cast in steel mould measuring $150 \mathrm{~mm} * 150 \mathrm{~mm} * 150 \mathrm{~mm}$. The mould and its base were damped together during concrete casting to prevent leakage of mortar. Thin engine oil was applied to the inner surface of the moulds to make for easy removal of the cubes. Batching of all the constituent material was done by weight using a weighing balance of 50 kg capacity based on the adapted mix ratios and water cement ratios. A total number of 70 mix ratios were to be used to produce 70 prototype concrete cube. Fifteen (35) out of the 70 mix ratios were as control mix
ratios to produce 35 cubes for the conformation of the adequacy of the mixture design given by the Eqn. (19). Curing commenced 24 hours after moulding. The specimens were removed from the moulds and were placed in clean water for curing. After 28days of curing the specimens were taken out of the curing tank.

3.2.2. COMPRESSIVE STRENGTH TEST

Testing was conducted immediately after the specimen was removed from the curing process and dried. Smooth surface metal plate (serving as base plate) was placed at the bottom and top of each of the specimen cube so as to ensure uniform distribution of load for accurate crushing. Two samples were crushed for each mix ratio. The compressive strength was then calculated using the formula below:

$$
\begin{equation*}
\text { Compressive Strength }=\frac{\text { Average failure Load }(\mathrm{N})}{\text { Cross- sectional Area }\left(\mathrm{mm}^{2}\right)} \quad \frac{\mathrm{P}}{\mathrm{~A}} \tag{45}
\end{equation*}
$$

4. RESULTS AND DISCUSSION

4.1. COMPRESSIVE STRENGTH AND BULK DENSITY TEST RESULTS

The results of the compressive strength ($\mathrm{R}_{\text {esponse }}, \mathrm{Y}_{\mathrm{i}}$) based on a 28-days strength is presented in Table 3. These were calculated from Eqn.(45)

Table 3: 28 ${ }^{\text {th }}$ Day Compressive Strength Values and their Corresponding Densities for the Initial Experimental Tests.

Response Symbol	Replicate	Average weight (KN)	Volume $\left(\mathrm{M}^{3}\right)$	Average bulk density	Crushing load (KN)	Cross sectional area (MM^{2})	Strength (Nmm^{2})	Average strength (Nmm^{2})
Y_{1}	A	8.50	0.003375	2519	342	22500	15.20	16.89
	B				390		17.33	
	C				408		18.13	
Y_{2}	A	8.34	0.003375	2471	384	22500	17.07	16.03
	B				348		15.47	
	C				350		15.56	
Y3	A	8.13	0.003375	2409	300	22500	13.33	15.26
	B				380		16.89	
	C				350		15.56	
Y4	A	8.54	0.003375	2542	478	22500	21.25	19.91
	B				461		20.47	
	C				405		18.00	
Y5	A	8.51	0.003375	2533	486	22500	2160	19.65
	B				480		21.34	
	C				360		16.00	
Y 112	A	8.25	0.003375	2444	380	22500	16.89	16.00
	B				360		16.00	
	B				340		15.11	
Y 122	A	8.25	0.003375	2444	300	22500	13.33	14.37
	B				350		15.56	
	C				320		14.22	

Y_{122}	A	8.08	0.003375	2415	342	22500	$\begin{aligned} & \hline 15.20 \\ & 15.47 \\ & 14.93 \end{aligned}$	15.20
	B				348			
	C				336			
Y_{133}	A	8.22	0.003375	2436	320	22500	14.22	15.26
	B				330		14.67	
	C				380		16.89	
Y_{114}	A	8.30	0.003375	2436	350	22500	15.56	14.00
	B				300		13.33	
	C				295		13.11	
Y_{144}	A	8.24	0.003375	2444	300	22500	13.32	14.84
	B				348		15.47	
	C				354		15.73	
Y 115	A	8.22	0.003375	2436	384	22500	17.06	16.80
	B				390		17.33	
	C				360		16.00	
Y_{155}	A	8.64	0.003375	2560	360	22500	16.00	18.06
	B				466		20.78	
	C				432		19.20	
Y_{223}	A	8.10	0.003375	2400	312	22500	13.87	14.40
	B				360		16.00	
	C				300		13.33	
Y_{233}	A	8.32	0.003375	2465	336	22500	14.93	16.09
	B				390		17.34	
	C				360		16.00	
\mathbf{Y}_{224}	A	8.30	0.003375	2459	340	22500	15.11	16.59
	B				380		16.89	
	C				400		17.78	
\mathbf{Y}_{244}	A	8.34	0.003375	2471	350	22500	15.56	14.74
	B				345		15.33	
	C				300		13.33	
$\mathbf{Y}_{\mathbf{2 2 5}}$	A	8.22	0.003375	2436	360	22500	15.56	16.67
	B				385		15.33	
	C				380		13.33	
Y_{255}	A	8.50	0.003375	2518	485	22500	21.55	21.82
	B				495		22.00	
	C				493		21.91	
Y 334	A	8.48	0.003375	2512	490	22500	21.78	19.63
	B				470		20.89	
	C				365		16.22	
Y 344	A	8.36	0.003375	2477	380	22500	16.89	16.15
	B				365		16.22	
	C				345		15.33	
Y 335	A	8.10	0.003375	2400	345	22500	15.32	15.26
	B				350		15.36	
	C				335		14.89	

ISSN 2520-0449 (Online)
Vol.5, Issue 1, pp 1-23, 2022

Y 355	A	8.33	0.003375	2221	300	22500	$\begin{aligned} & 13.32 \\ & 15.47 \\ & 15.56 \end{aligned}$	14.78
	B				348			
	C				350			
Y_{445}	A	8.25	0.003375	2444	385	22500	17.11	16.52
	B				370		16.44	
	C				360		16.	
Y455	A	8.28	0.003375	2453	380	22500	16.89	17.11
	B				400		17.78	
	C				375		16.67	
Y 123	A	8.35	0.003375	2474	390	22500	17.33	17.33
	B				385		17.11	
	C				395		17.56	
Y 124	A	8.52	0.003375	2524	390	22500	17.33	17.93
	B				420		18.67	
	C				400		17.78	
Y_{125}	A	8.49	0.003375	2515	370	22500	16.44	16.96
	B				385		17.11	
	C				390		17.33	
Y 134	A	8.40	0.003375	2488	365	22500	16.22	16.59
	B				380		16.89	
	C				375		16.67	
Y 135	A	8.43	0.003375	2498	368	22500	16.36	16.86
	B				390		17.33	
	C				380		17.51	
Y 145	A	8.47	0.003375	2509	400	22500	17.78	17.43
	B				382		16.98	
	C				394		17.11	
Y 234	A	8.53	0.003375	2527	420	22500	18.67	17.59
	B				382		16.98	
	C				385		17.11	
Y 235	A	8.56	0.003375	2536	410	22500	18.22	17.70
	B				390		17.33	
	C				395		17.56	
Y 245	A	8.58	0.003375	2542	400	22500	17.78	18.00
	B				420		18.67	
	C				395		17.56	
Y 345	A	8.62	0.003375	2554	410	22500	18.22	18.29
	B				400		17.78	
	C				425		18.89	

4.2 EXPERIMENTAL (CONTROL) TEST RESULT

Table 4 shows the $28^{\text {th }}$ day Compressive strength values and their corresponding density for the Control Test Experimental tests.

American Journal of Computing and Engineering
ISSN 2520-0449 (Online)
www.ajpojournals.org

Table 4: 28 ${ }^{\text {TH }}$ Day Compressive Strength Value and their corresponding Density for the Control Test Experimental Tests.

Response Symbol	Replicate	Average weight (KN)	Volume $\left(\mathrm{M}^{3}\right)$	Average bulk density	Crushing load (KN)	Cross sectional area $\left(\mathrm{MM}^{2}\right)$	Strength (Nmm^{2})	Average strength (Nmm^{2})
C_{1}	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.79	0.003375	26.04	$\begin{aligned} & 364 \\ & 465 \\ & 419 \\ & \hline \end{aligned}$	22500	19.18	18.48
C_{2}	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.15	0.003375	2415	$\begin{aligned} & 428 \\ & 387 \\ & 385 \end{aligned}$	22500	$\begin{gathered} \hline 18.00 \\ 17.20 \\ 16.1 \end{gathered}$	17.10
C3	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.45	0.003375	2504	$\begin{aligned} & 338 \\ & 423 \\ & 388 \end{aligned}$	22500	$\begin{aligned} & \hline 18.02 \\ & 15.81 \\ & 17.23 \end{aligned}$	17.02
C4	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.19	0.003375	2427	$\begin{aligned} & 549 \\ & 460 \\ & 378 \end{aligned}$	22500	$\begin{gathered} 19.41 \\ 20.46 \\ 21.81 \end{gathered}$	20.56
C_{5}	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.01	0.003375	2373	$\begin{aligned} & 457 \\ & 412 \\ & 506 \end{aligned}$	22500	$\begin{aligned} & 26.25 \\ & 21.30 \\ & 19.50 \end{aligned}$	20.35
C_{112}	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.25	0.003375	2444	$\begin{aligned} & 407 \\ & 385 \\ & 431 \end{aligned}$	22500	$\begin{aligned} & 18.07 \\ & 17.12 \\ & 19.17 \end{aligned}$	18.12
C_{122}	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	7.89	0.003375	2338	$\begin{aligned} & \hline 348 \\ & 408 \\ & 414 \end{aligned}$	22500	$\begin{aligned} & \hline 15.48 \\ & 18.13 \\ & 18.38 \end{aligned}$	17.33
C113	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.19	0.003375	2427	$\begin{aligned} & 342 \\ & 403 \\ & 362 \end{aligned}$	22500	$\begin{aligned} & \hline 15.20 \\ & 17.90 \\ & 16.10 \end{aligned}$	16.40
C133	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.07	0.003375	2391	$\begin{aligned} & 397 \\ & 347 \\ & 375 \end{aligned}$	22500	$\begin{aligned} & 1565 \\ & 17.60 \\ & 16.45 \end{aligned}$	16.56
C114	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.25	0.003375	2444	389	22500	$\begin{aligned} & \hline 17.30 \\ & 14.00 \\ & 14.20 \end{aligned}$	15.20
C144	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.01	0.003375	2373	$\begin{aligned} & 397 \\ & 347 \\ & 375 \end{aligned}$	22500	$\begin{aligned} & \hline 15.65 \\ & 16.45 \\ & 17.65 \end{aligned}$	16.56
C115	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.07	0.003375	2391	$\begin{aligned} & 410 \\ & 401 \\ & 407 \end{aligned}$	22500	$\begin{aligned} & \hline 18.22 \\ & 18.80 \\ & 17.10 \\ & \hline \end{aligned}$	18.04

www.ajpojournals.org

C155	A	8.49	0.003375	2516	475	22500	21.10	19.56
	B				437		19.44	
	C				408		18.13	
C_{223}	A	7.97	0.003375	2361	349	22500	16.50	15.52
	B				399		14.73	
	C				300		15.33	
C233	A	8.01	0.003375	2373	437	22500	19.40	17.30
	B				367		16.30	
	C				365		16.20	
C_{224}	A	8.02	0.003375	2376	458	22500	19.36	18.23
	B				365		17.20	
	C				408		18.13	
C244	A	8.23	0.003375	2439	338	22500	16.50	15.65
	B				403		15.40	
	C				316		15.05	
C_{225}	A	7.98	0.003375	2364	360	22500	18.00	17.75
	B				386		19.15	
	C				452		16.10	
C255	A	8.15	0.003375	2415	371	22500	15.50	16.39
	B				318		15.13	
	C				417		11.54	
C334	A	8.21	0.003375	2433	441	22500	19.60	17.40
	B				320		14.20	
	C				4141		18.40	
C344	A	799	0.003375	2367	360	22500	18.03	17.95
	B				404		17.93	
	C				448		17.90	
C344		7.99	0.003375	2367	360	22500	18.03	17.95
	B				404		17.93	
	C				448		17.90	
C335	A	7.89	0.003375	2338	420	22500	18.65	16.45
	B				344		15.30	
	C				347		15.40	
C355	A	8.14	0.003375	2412	339	22500	15.07	15.88
	B				388		17.23	
	C				423		15.23	
C445	A	8.29	0.003375	2456	383	22500	17.03	18.02
	B				448		19.93	
	C				385		17.10	
C455	A	8.18	0.003375	2424	446	22500	19.81	18.56
	B				419		18.60	
	C				389		17.27	

C_{123}	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.28	0.003375	2453	$\begin{aligned} & \hline 441 \\ & 367 \\ & 448 \end{aligned}$	22500	$\begin{aligned} & \hline 19.60 \\ & 16.30 \\ & 19.90 \end{aligned}$	18.60
C124	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.00	0.003375	2370	$\begin{aligned} & 385 \\ & 410 \\ & 471 \end{aligned}$	22500	$\begin{aligned} & \hline 17.10 \\ & 18.20 \\ & 20.95 \end{aligned}$	18.75
C_{125}	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.16	0.003375	2418	$\begin{aligned} & 363 \\ & 410 \\ & 433 \end{aligned}$	22500	$\begin{aligned} & 16.12 \\ & 18.20 \\ & 19.26 \end{aligned}$	17.86
C134	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.39	0.003375	2486	$\begin{aligned} & \hline 423 \\ & 396 \\ & 366 \end{aligned}$	22500	$\begin{aligned} & 16.25 \\ & 18.79 \\ & 17.58 \end{aligned}$	17.54
C_{135}	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.40	0.003375	2489	$\begin{aligned} & \hline 351 \\ & 423 \\ & 421 \end{aligned}$	22500	$\begin{aligned} & 15.62 \\ & 18.70 \\ & 18.78 \end{aligned}$	17.70
C145	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.41	0.003375	2492	$\begin{aligned} & \hline 471 \\ & 385 \\ & 394 \end{aligned}$	22500	$\begin{aligned} & \hline 19.55 \\ & 18.10 \\ & 17.40 \end{aligned}$	18.35
C234	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.08	0.003375	2394	$\begin{aligned} & 468 \\ & 392 \\ & 393 \end{aligned}$	22500	$\begin{aligned} & 20.80 \\ & 17.40 \\ & 17.45 \end{aligned}$	18.55
C_{235}	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.10	0.003375	2400	$\begin{aligned} & \hline 383 \\ & 423 \\ & 468 \end{aligned}$	22500	$\begin{aligned} & \hline 17.00 \\ & 18.80 \\ & 20.90 \end{aligned}$	18.90
C_{245}	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.13	0.003375	2409	$\begin{aligned} & 458 \\ & 458 \\ & 386 \end{aligned}$	22500	$\begin{aligned} & 20.35 \\ & 20.25 \\ & 17.15 \end{aligned}$	19.25
C345	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	8.43	0.003375	2498	$\begin{aligned} & \hline 385 \\ & 477 \\ & 478 \end{aligned}$	22500	$\begin{aligned} & 18.12 \\ & 20.18 \\ & 21.25 \end{aligned}$	19.85

4.3 REGRESSION EQUATION FOR COMPRESSIVE STRENGTH

From Eqns. (20) through (37) and Table 3, the coefficients of the Scheffe's third degree polynomial were determined as follows:
$\beta_{1}=16.89 ; \beta_{2}=14.93 ; \beta_{3}=16.80 ; \beta_{4}=19.91 ; \beta_{5}=19.65$;
$\beta_{12}=-3.74 ; \beta_{13}=-13.65 ; \beta_{14}=-3.11 ; \beta_{15}=-7.33 ; \beta_{23}=-1.8 ; \beta_{24}=-10.37 ; \beta_{25}=3.11 ; \beta_{34}$ $=1.37 ; \beta_{35}=-10.96 ; \beta_{45}=-13.34 ; \gamma_{12}=90.25 ; \gamma_{13}=201.94 ; \gamma_{14}=198.2 ; \gamma_{15}=90.25 ; \gamma_{23}=$ 2-4.07; $\gamma_{24}=220.21 ; \gamma_{25}=258.3 ; \gamma_{34}=2.51 .98 ; \gamma_{35}=212.65 ; \gamma_{45}=226.42 ; \beta_{123}=-40 ; \beta_{124}$
$=-5.79 ; \beta_{125}=131.84 ; \beta_{134}=-35.60 ; \beta_{135}=-75.95 ; \beta_{145}=-61.02 ; \beta_{234}=-69 ; \beta_{235}=-66.21$;
$\beta_{245}=-82.53 ; \beta_{345}=-55.04$.

ISSN 2520-0449 (Online)
Vol.5, Issue 1, pp 1-23, 2022
www.ajpojournals.org

Substituting the values of these coefficients in Eqn.(46) into Eqn. (19), yields the mathematical model for the optimization of the compressive strength of the concrete cubes made using glass fibre (GFRC) based on Scheffe's $(5,3)$ polynomial.

4.4 VALIDATION AND TEST OF ADEQUACY OF THE MODEL

The model was analyzed statistically using Fisher test and the adequacy of the model was tested against the experimental results of the control points. The predicted values $\left(\mathrm{Y}_{(\text {predicted })}\right)$ for the test control points were obtained by substituting the values of X_{i} into the Scheffe's $(5,3)$ Polynomial Model Equation i.e. Revised Eqn. (19). These values were compared with the experimental result ($\mathrm{Y}_{\text {(observed) }}$) given in Table 3 and there is no significant difference between the model experimental result and the theoretical expected result. Thus, the model is adequate.

4.5. COMPARISON BETWEEN SCHEFFE'S SECOND DEGREE (5,2) AND THIRD DEGREE $(5,3)$

POLYNOMIAL MODELS

The table of comparison is shown in Table 5.
Table 5: Table of Comparison of the $\mathbf{2 8}^{\text {th }}$ Compressive Strength Values

Expt. No.	Scheffe's (5,2) Polynomial model (Nwachukwu \& others(2017))		Scheffe's (5,3) Polynomial model (Present study)		Percentage Difference
	Response Symbol	Average Strength $\left(\mathrm{Nmm}^{-2}\right)$	Response Symbol	Average Strength $\left(\mathrm{Nmm}^{-2}\right)$	
1.	Y_{1}	16.89	Y_{1}	16.89	0.000
2.	Y_{2}	14.93	Y_{2}	16.03	0.011
3.	Y_{3}	16.80	Y_{3}	15.26	0.015
4.	Y4	19.91	Y4	19.91	0.000
5.	Y5	19.65	Y5	19.65	0.000
6.	Y_{12}	16.09	Y_{112}	16.00	0.001
7.	Y_{13}	20.71	Y_{113}	14.37	0.063
8.	Y_{14}	15.20	Y_{122}	15.20	0.000
9.	Y 15	16.09	Y 133	15.26	0.009
10.	Y 23	13.51	Y 114	14.00	0.005
11.	Y_{24}	14.84	Y 144	14.84	0.000
12.	Y_{25}	16.80	Y_{115}	16.80	0.000
13.	Y 34	18.66	Y_{155}	18.06	0.006
14.	Y 35	14.40	Y_{223}	14.40	0.000
15.	Y45	16.09	Y233	16.09	0.000
16.			Y_{224}	16.59	0.022
17.			Y_{244}	14.74	0.147
18.			Y2 25	16.67	0.167
19.			Y255	21.82	0.218

20.	Y 334	19.63	0.196
21.	Y 344	16.15	0.162
22.	Y_{335}	15.26	0.153
23.	Y_{355}	14.78	0.148
24.	Y_{445}	16.52	0.165
25.	Y_{455}	17.11	0.171
26.	Y_{123}	17.33	0.173
27.	Y_{124}	17.93	0.179
28.	Y_{125}	16.96	0.170
29.	Y 134	16.59	0.166
30.	Y 135	16.86	0.169
31.	145	17.43	0.174
32.	Y_{234}	17.59	0.176
33.	Y_{235}	17.70	0.177
34.	Y_{245}	18.00	0.180
35.	Y_{345}	18.29	0.183

4.6. DISCUSSION OF RESULTS

Using Scheffe's $(5,3)$ simplex model the values of the compressive strength were obtained. The model gave highest compressive strength of $21.82 \mathrm{Nmm}^{-2}$ corresponding to mix ratio of 0.7:1:1:1.8:1.2 for water, cement, fine and coarse aggregate and glass fibre respectively. The maximum strength using Scheffe's $(5,2)$ simplex model was obtained as $20.71 \mathrm{Nmm}^{-2}$ corresponding to mix ratio of $0.59: 1: 1.45: 1.85: 0.75$. The maximum strength values from both models were greater than the minimum value specified by the American Concrete Institute for the compressive strength of good concrete. Using the model, compressive strength of all points in the simplex can be derived.

5. CONCLUSION AND RECOMMENDATION

5. 1. CONCLUSION

Scheffe's third degree polynomial $(5,3)$ was used to formulate a model for predicting the compressive strength of GFRC cubes. This model could predict the compressive strength of the GFRC concrete cubes if the mix ratios are known and vice versa. The strengths predicted by the models were in good agreement with the corresponding experimentally observed results. The optimum attainable compressive strength predicted by the Scheffe's $(5,3)$ model at the $28^{\text {th }}$ day was $21.82 \mathrm{~N} / \mathrm{mm}^{2}$. When compared with optimum attainable compressive strength predicted by the Scheffe's $(5,2)$ model, given as $20.71 \mathrm{~N} / \mathrm{mm}^{2}$ by Nwachukwu and others (2017), it can be deduced that the strength predicted by Scheffe's $(5,3)$ model is slightly higher than that by Scheffe's $(5,2)$ model. However, the strength predicted by both models meet the minimum standard requirement stipulated by American Concrete Institute of $20 \mathrm{~N} / \mathrm{mm}^{2}$ for the compressive strength. With the model, any desired strength of Glass Fibre Reinforced Concrete, given any mix proportions is easily evaluated.

Vol.5, Issue 1, pp 1-23, 2022
www.ajpojournals.org

5. 2. RECOMMENDATION

Though the maximum strength actualized is too low compared to other literatures it can also be said that if GFRC is used in the right form, it would produce the optimum strength required for good concrete. The audience are therefore advised to use optimized GFRC for construction purposes, especially light weight structures when economy and safety advantages are considered most. This is due to the fact that replacement of the conventional steel reinforcement with homogenous tiny strands of Alkaline Resistant (AR) glass fibre goes a long way to save cost, as steel reinforcements are more costly than glass fibres.

REFERENCES

ACI Committee 544. (1982): "State-of-the-Report on Fibre Reinforced Concrete, (ACI 544.1R-82)", Concrete International: Design and Construction. Vol. 4, No. 5: Pp. 9-30, American Concrete Institute, Detroit, Michigan, USA.
Aggarwal, M.L. (2002): "Mixture Experiments: Design Workshop Lecture Notes", University of Delhi, India.

British Standards Institution, BS 12 (1978): Ordinary and Rapid - Hardening Portland Cement; London,

Ezeh, J.C. \& Ibearugbulam, O.M. (2009):"Application of Scheffe's Model in Optimization of Compressive

Cube Strength of River Stone Aggregate Concrete"; International Journal of Natural and Appllied Sciences; Vol. 5, No. 4,Pp 303-308.

Ezeh, J.C., Ibearugbulam, O.M. \& Anyaogu, L. (2010a):"Optimization of Compressive Strength of Cement- Sawdust Ash Sandcrete Block using Scheffe's Mathematical Model"; Journal of Applied Engineering Research. Vol.4, No.4, Pp 487-494.
Ezeh, J.C., Ibearugbulam, O.M.\&Anya, U. C (2010b):"Optimization of aggregate composition of laterite/sand hollow Block Using Scheffe's Simplex Method"; International Journal of Engineering. Vol.4, No.4, Pp 471 - 478.
.Ibearugbulam, O.M. (2006):"Mathematical Model for Optimization of Compressive Strength of Periwinkle Shell-Granite Aggregate Concrete";M.Eng.. Thesis, Federal University of Technology, Owerri, Nigeria.

Nwachukwu, K.C., Okafor, M. ,Thomas, B., Oputa, A.A., Okodugha,D.A. and Osaigbovo, M.E. . (2017): An Improved Model For The Optimization Of The Compressive Strength Of Glass Fibre Reinforced Concrete (GFRC) Using Scheffe's Second Degree Polynomials, Research journal's Journal of Civil Engineering, vol. 3, No. 2

Nwakonobi, T.U and Osadebe, N.N (2008): "Optimization Model for Mix Proportioning of Clay- Ricehusk- Cement Mixture for Animal Buildings"; Agricultural Engineering International:the CIGR Ejournal,Manuscript BC 08 007, Vol x
Neville, A.M. (1981): Properties of Concrete; $3^{\text {rd }}$ edition, Pitman, England.
Obam, S.O. (2006). The Accuracy of Scheffe's Third Degree over Second Degree Optimization Regression Polynomials, Nigerian Journal of Technology, Vol. 2, No.25, Pp 1 -10 .

Vol.5, Issue 1, pp 1-23, 2022

Obam, S.O.(2009):"A Mathematical model for Optimization of Strength of concrete : A case study for shear modulus of Rice Husk Ash Concrete." Journal of Industrial Engineering International l; Vol. 5, No.9,Pp 76-84.

Onwuka,D.O, Okere, C.E.,Arimanwa, J.I. and Onwuka, S.U.(2011):"Prediction of Concrete Mix ratios using Modified Regression Theory, Computer Methods in Civil Engineering, Vol. 2. No. 1 Pp. 95- 107.

Okere, C.E., (2006):"Mathematical Models for Optimization of the Modulus of rupture of concrete"; M.Eng. Thesis, Civil Engineering Department, Federal University of Technology, Owerri.

Rao,M.V.K., Kumar, P.R, and Srinivas, R: (2011):"Effect of Size and Shape of Specimen on Compressive

Strength of Glass Fibre Reinforced Concrete (GFRC)"; FACTA UNIVERSTATIS series: Architecture and Civil Engineering, vol.9, No. 1, Pp 1-9

Scheffe, H. (1958): Experiment with Mixtures"; International Journal of Royal Statistics Society, Series B, Vol.20, Pp. 344-360.

