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Abstract

Purpose: This work is concerned with the formulation of peculiar Total Potential Energy
Functional (TPEF) for a Doubly Symmetric Single (DSS) cell Thin -walled Box Column
(TWBC). The formulated Energy Functional Equations support the stability analysis of a DSS
cell thin-walled box (closed) column cross-section using Raleigh - Ritz Method (RRM) with
polynomial shape functions.

Methodology: This present formulation is based on the governing TPEF developed by
Nwachukwu and others (2017). The polynomial shape functions (only the first two coordinate
polynomial shape functions) for different boundary conditions were generated first, and then
followed by the formulation of TPEF for different boundary conditions of the DSS cell TWBC.

Findings: The Raleigh- Ritz based formulated TPEF equations are found suitable, handy and
simple to be used in the Flexural(F) , Flexural- Torsional(FT) and Flexural- Torsional-
Distortional(FTD) buckling/stability analysis of DSS cell TWBC cross-section where data
obtained (critical bulking loads) will be compared with the works of other authors in subsequent
papers.

Conclusion: Henceforth it is recommended that additional work should be done using more than
first two coordinate polynomial shape functions in order to increase the accuracy of RRM.

Keywords: Doubly Symmetric Single (DSS) Cell ,Total Potential Energy Functional(TPEF),
Thin -Walled Box Column(TWBC), Raleigh- Ritz Method(RRM),Bulkling/ Stability Analysis
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1. INTRODUCTION

According to Simao and Simoes da silva (2004a), the use of very slender thin-walled cross-
sections members have become increasingly common due to their high stiffness/weight ratio, in
recent years. For about a century many branches of the industry have sought stronger and at the
same time lighter structural solutions which optimize the effectiveness and the cost of the
structures (Andreassen, 2012). Among these are the civil, mechanical, naval, and aerospace
industries. This has led to an increasing use of thin-walled structures such as cold-formed steel
beams and columns, steel and concrete box girders, ship hulls, trapezoidal steel sheeting and
other structures in which one dimension is small compared to the other dimensions. Thin-walled
structures such as beams, columns, plates, shells, sheeting, and pipes, among others are
frequently used in civil, naval, space, offshore and aerospace constructions.

From the stand point of torsion resistance, Thin-Walled Sections (TWS) in general, are classified
into three types:

(@) Open Thin-Wall (OTW); in which a cell shear flow circuit cannot be established in the cross
section. Examples are shown in figure 1.

M [ ——
L l I
(a) T- Section (b) Angle Section (c) Channel Section
————
— | | L ——
(d) Section (e) Z- Section (F) Channel Section

Figure 1: Examples of Thin-Walled Open Cross-Sections
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(b) Closed Thin- walled (CTW); in which at least one cell shear flow circuit can be established in
the cross- section. Closed TW sections are in turn classified into single cell or multi-cell,
according to whether one or several shear flow circuits, respectively can be identified. Examples
of closed Thin-Walled sections are shown in figure 2.

(@) Single cell closed cross section (b) double cell closed cross-section

(c)  Triple cell closed cross-section

Figure 2: Examples of Thin- walled closed cross sections

(c) Hybrid Thin- Walled (HTW): This type of section contains a mixture of Closed Thin-walled
(CTW) and Open Thin-Walled (OTW) components. An example of HTW cross section is shown
in figure 3.

Figure 3: An example of Hybrid Thin- walled cross section

59


http://www.ajpojournals.org/

American Journal of Computing and Engineering A J P @

ISSN 2520-0449 (Online)
Vol.4, Issue 1, pp 57-82, 2021 www.ajpojournals.org

Thin-walled closed cross-section, especially the box typed structures can also have different
types of arbitrary cross sections. Different types of arbitrary box cross- section are shown in
figure 4.

(a)Doubly symmetric box section  (b) Mono-symmetric box section (c) Asymmetric box section

Figure 4: Different Types of Arbitrary Box Cross-Section

Nwachukwu et al., (2017) derived the governing equation for the TPEF for a TWBC applicable
to RRM. It becomes expedient to develop the individual or peculiar TPEF for the stability
analysis of different thin walled box column cross- sections. Thin- Walled Box Column cross
sections that can be analyzed are as listed under.

Doubly Symmetric Single Cell Cross- Section (DSS)
Doubly Symmetric Multi- Cell Cross- Section (DSM)
Mono- Symmetric Single Cell Cross- Section (MSS)
Mono- Symmetric Multi- Cell Cross- Section (MSM)
Asymmetric Single Cell Cross- Section (ASS)
Asymmetric Single Cell Cross- Section (ASM)

However, in this work, attention is focused only on the development of TPEF for DSS cross-
section. Many researchers have carried out one form of analysis or the other on thin- walled box
columns and related topics, but none has used RRM approach with polynomial shape function.
For instance, Krolak et al., (2009) presented a theoretical, numerical and experimental analysis
of the stability and ultimate load of multi-cell thin-walled columns of rectangular and square
cross-sections subjected to axial compression. Shanmugam et al., (1989) presented a numerical
method to investigate the ultimate strength behavior of thin-walled steel box columns subjected
to axial loads and biaxial end moments. The work of Ezeh (2009) involved a theoretical
formulation based on Vlasov’s theory as modified by Varbanov, in analyzing flexural, flexural-
torsional, and flexural-torsional-distortional buckling modes of thin-walled closed columns.
Chidolue and Osadebe (2012), also used Vlasov’s theory to carryout Torsional- Distortional
analysis of thin- walled box girder bridges. Chidolue and Aginam (2012) investigated the effects
of shape factor on the Flexural- Torsional-Distortional behavior of thin- walled box girder
structures using Vlasov’s Theory. Ezeh (2010) also investigated the buckling behavior of axially
compressed multi- cell doubly symmetric thin- walled column using Vlasov’s theory. The works
of Osadebe and Chidolue (2012a), Osadebe and Chidolue (2012b), Osadebe and Ezeh (2009a),
Osadebe and Ezeh (2009b) were also based on Vlasov’s method.
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Thus in the area of stability analysis of thin-walled box (closed) columns, little or no effort has
been done to use the method of Raleigh- Ritz for analysis. Henceforth, it has become important
to further the frontier of knowledge by developing the specific/peculiar TPEF for different DSS
boundary conditions in line with RRM. The work is purely theoretical and it is based on Raleigh-
Ritz Theory. This work is therefore an attempt to formulate a working TPEF for DSS cross-
section based on the developed governing TPEF Equations. The formulated energy functional
will now be used to analyze a DSS thin- walled box (closed) columns of different boundary
conditions in subsequent papers.

2. GENERATION OF POLYNOMIAL SHAPE FUNCTION

Let us recall the general(governing) Total Potential Energy Functional derived by Nwachukwu et
al., (2017) as stated in equation (1).

n =k [[vPx?QL-x)?dx +k, [[(v))? dx+ ks [ (v")?dx —ky f,(v")? dx.
1)
Where, v is the displacement function, which is a function of polynomial shape function, ¢
Ap? AG EI P
ky = S:Iz; ky = >0 ks = P and k, = Py

2(a-d)

P is critical buckling load, A is Cross sectional area, E is young modulus of elasticity, G is shear
modulus, I is moment of inertia, and L is length of the column.

In general, the Rayleigh — Ritz method is stated as:

- U= Yicidi =cidy + gy o3t t Cnn
3

where ¥ =v =assumed lateral displacement of the column/ displacement function
¢ = Arbitrary function satisfying the boundary conditions of the
Column, otherwise known as the polynomial shape function
¢ = undetermined coefficient / unknown constant.
Our interest is this section is to generate the polynomial shape function, ¢

2.1. BRIEF PROCEDURES FOR GENERATING THE POLYNOMIAL SHAPE
FUNCTIONS

The following steps are necessary for the generation of the polynomial shape function, ¢.
(1). In general, the coordinate polynomial shape function can be defined in terms of Taylor-
Mclaurin series given by:

dii= 12..) = mboa;xt = ao + a x' + a x%  +....tampx™

(4)
where a; = unknown coefficient and nb = number of boundary conditions that apply to mode of
deformation.
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(ii). The first coordinate polynomial shape function, ¢z is expected to have the highest order, nb
while the second polynomial shape function, ¢ is expected be one order higher, and so on.

(iii).  As the efficiency of RRM depends strongly on the correct choice of the coordinate
function, the choice of orthonormal functions, ¢i over the member’s length defined by chen and
Lui (1987 ) as:

L o (cifi=]
Jy dipydx = {0 ifi #j
®)

Accelerates the convergence of the method. In equation (5), the first condition is a normalization
rule, where c is a real positive constant usually taken equal to 1 or to the member’s length, L,
whereas the second condition constitutes an orthogonality condition.

(iv). By applying the selected boundary conditions into equation 5, the process of finding the
unknown coefficients, a; is started.

(v). The normality rule of equation (5) wrt the member’s length is now imposed in order to
evaluate the remaining coefficients. Note that it is only the positive root of the normalization
condition that is chosen.

(vi) By solving for the unknown coefficients, a;, the first coordinate polynomial shape function,
¢1is now completely defined.

(vii) The second coordinate polynomial, ¢2 is set up in the same way as the first polynomial, but
is one order higher.

(viii).Like the previous polynomial, the selected boundary conditions are used to start up the
process of evaluating the unknown coefficients.

(ix) The orthogonality condition is imposed between ¢1 (which is already known) and ¢2 in the
form of

[y bibodx = 0
®)

(x). Next, the normalization condition is now applied in order to evaluate the remaining
coefficients of ¢, using

[, $% dx S
(7) After which, the polynomial ¢2 is completely defined.

(xi). For this present work, only the first two coordinate polynomial shape functions will be
generated and used subsequently.

62


http://www.ajpojournals.org/

American Journal of Computing and Engineering A J P @
ISSN 2520-0449 (Online)
Vol.4, Issue 1, pp 57-82, 2021 www.ajpojournals.org

2.2. GENERATION OF POLYNOMIAL SHAPE FUNCTIONS FOR DIFFERENT
BOUNDARY CONDITIONS

The different boundary conditions that will be considered are:

I Pinned-Pinned (S-S) boundary condition
ii. Fixed-Fixed or Clamped- Clamped(C-C) boundary condition
i, Fixed — Pinned (C-S) boundary condition

2.2.1. THE POLYNOMIAL SHAPE FUNCTIONS FOR THE PINNED- PINNED (S-S)
BOUNDARY CONDITION

For thin- walled columns, simply supported at both ends (S-S), ie the end sections are free to
warp, the boundary conditions are:

i., Kinematic conditions:

¢=0)=0 and dx=t) =0
8(a-b)

ii. Static conditions:
¢"x=00=0 and ¢"x=1) =0
9(a-b)
Using only the kinematic boundary conditions, the first coordinate polynomial shape function is
of second order and has three unknown coefficients (see Eqn.4) as follows:

01

Qo+ aX + ax®

(10)
For ¢1x=0) = 0, we have

do = 0
11)

for 1x=) = 0, we have
1 =0= a + aiL + apl?
= alL+ al? =0

(12)

solving, a1 =-aL

(13)

Imposing the normality rule of Eqn. (5) w.r.t the member’s length yields:
yetax = L

(14)

Where ¢1 = - axxL + ax?

~p? = a3 x?L?- a3x3L - a3x’L +aix*
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= a3 x%L%- 2a3x’L +a3x*
(15)

Substituting Eqgn. (15) into Eqn. (14) yields:

J(a3 X2 - 2a3x°L +a3xf)dx = L

2712,3 27 4 2,5
as; L°x 2a5Lx asx
= [2 _ 2 2]% =L
3 4 5
2715 215 215
as L 2a5L asL
= Z =L
3 4 5
2 - 30
Thus a3 = =
V30
= Q=1+ —
L2

Taking only the positive roots,

_ 30
d2 = L_2
(16)
Thus aa= -aoL = -\]{iz_o
(17)
Thus  ¢1 = ax+ ax?
_ V30 V30 o _ X | X2
=%+ o = VE0-T 4
(18)

The second polynomial which is one order higher than the first polynomial is set in the following
form:

Dy = Ao+ aix + ax? +asx®

(19)
For ¢2x=0) = 0, a =0
(20)
For ¢2x=1) = 0O, we have
®; = aillL+ al?+al® = 0
Thus, a1 = -aoL —asl?
(21)

Substituting Egn.(21) into Egn.(19), we have

@y = -aolx- asLX + ax? + asx®
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(22)
Imposing the orthogonality Rule between @1 of Eqn (18) and @, of Eqn.(22) gives :

[y brbodx = 0

(23)
2 2 ayx3 asx*/30  ayx3 3 azx
N f[aZX\/_O+a3LX 30 — 25 /30 — 222 - 25 /30 — 2,x°V30 + 2530 +
% 30 dx =0
(24)
a,x3/30 a3LX\/_ ayx* /—_a3x5\/ﬁ ayx* /—_a3xx/_ ayx° 30 a3x L
[ 3 T3 V3 5L V3 PR 0+ \/_] 0
=0
(25)
o 20 B0 2l rzg BLR0 2l 3LWI0 b ahy B3 = g

(26) Simplifying further gives:
L0 2l r3p - 230 4 230 4 B0 B0 a0 sl g 2 g
(27) = 2a,L.3/30 + 3a3LV30 = 0

2L =-3asL?

—3azL
a2 = —

o .
(28) Now substituting Eqn. (28) into Egn. (22)

D, = -aplx- asL?x + axx?® + azx®

_ 3a32L2x - asl?x - 3azLx? + apd
D, = agzzx ) 3a32Lx2 + an®
(29) To obtain ¢3 , we square Eqn.(29)
q)% :a§L4x2 | 3a3L3x%® + azL?x*  3afL3x3 _|_9a§L2X4 3a3L x° +a§L2X4 _3ajLx®
4 4 2 4 4 2 2 2
+ a3 x®

(30) Imposing the normality rule of Eqn.(14) gives:

L

2 —

Jy &2 dx = L

(31)
2717 2717 7 2717 2717 277 277
asL 3asL azL 3asL 3asL azL 3asL
3 _ 3 + 33 _ 243 +9a§L7 30 433+ 233
12 16 10 16 12 10 12
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+ a3 x7 _ L
7
(32)
= asl? = L
840
840
a% - e
a V840 _ V210 V4
3 N L3
2 %x/210
a3 =

o E
(33) Substituting Eqn. (33) into Egn. (29), the second coordinate polynomial shape function can
now be fully evaluated:

2%4/210 L2 x 3%2%/210 Lx? + 2%/210 x3

That is; @2 = e - L3 3
X x2 x3
= 210T - 3\/210; + 2% 210L_3
_ X x? x3
© = V20| - 35 + 23]
(34)

2.2.2. THE POLYNOMIAL SHAPE FUNCTIONS FOR THE
FIXED- FIXED (C-C) BOUNDARY CONDITIONS.

For columns, clamped at both ends (C-C columns), without the allowance of warping at the edge
sections, the relevant kinematic boundary conditions are:

L dp=0) = 0; =y =0
(35 a-b)

. =0 = 0; & x=1) = 0
(36 a-b)

Using the four kinematic boundary conditions, the first coordinate polynomial shape function is
of 4" order and has five unknown coefficients.

Expanding Eqn. (4) to the 4" order yields:

1 = Ao+ arx + ax? + asx® +ax?
(37)

Similarly, the second polynomial shape function is of 5™ order and has six unknown coefficients.
It is set in the following form from Eqgn. (4) :

Dy = ao+ arX + axx? + asx® + ax* + asx®
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(38) Evaluating Eqgn. (37) and Eqgn. (38) following the procedures used for the pinned - pinned
boundary conditions, we obtain :

b1 = @+ arXx + axx? + asx® + ax?
_ 3x:/70 %2 6% /70 x3 + 3%y/70x%

L2 L3 L4
(39)
oy 3% x2 6% x3 3xx4
(40) -Vl Lz - L3 * L4 ]
40
And
—3% x? 12+ x3  15xx*  6%x°
®; = V770 [ =t L3-L4+L5]
(41)

2.2.3. THE POLYNOMIAL SHAPE FUNCTIONS FOR THE
FIXED- PINNED (C-S) BOUNDARY CONDITIONS.

For columns clamped at one end and simply supported at the other end, the following boundary
conditions are fundamental.

i. Kinematic conditions:

dx=0) = 0 ; b=ty =0 and ' (x=0) = 0; (42a-
c)
ii. Static conditions:
¢" =1y = 0
(43)

By using both the kinematic and static conditions, the first coordinate polynomial shape function
is of 4" order and has five unknown coefficients. Expanding Eqn.(4) to the 4™ order yields:

D1 = 2+ aiX + ax? + asx® + asx?
(44)

Solving, we obtain that

70 9% x?2 15% x3 + 6xx*

Q= % [ - == L4 ]
(45)
Similarly, the second coordinate polynomial shape function is found out to be
770 —3% x? 141% x3  159xx* 21%x°
= |—= + - +
02 247 [ L2 L3 L4 L5 ]

(46)
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3. FOMULATION OF TOTAL POTENTIAL ENERGY FUNCTIONAL (TPEF) FOR
DSS TWBC
CROSS-SECTION
3.1. CROSS SECTIONAL PROPERTIES
Let us recall the general total potential energy functional as stated in Eqn. (1)
no=ky [vPx?QRL-x)%dx + Kk, [(v))? dx+ k3 [[(v')Pdx —k, [,(v)? dx.
(47)
Wherek, k, k3 and k, are all defined in Eqns.2 (a-d) respectively. In order to compute the
cross-section properties in kq, k, k3 and k,, we consider the cross- section shown in Fig.5. It is

noteworthy that this research work has adopted the same cross -section used by Ezeh (2009)
where he employed the use of VVlasov method, in order to allow for easy comparisons.

[« 26— B »
3 -
= f
da > Y
H G
| D C
Z
v
v

Figure 5: Doubly Symmetric Single Cell Thin —Walled Box Column Cross Section (DSS)

Here, our interest in evaluating the cross sectional properties are to determine the Cross-
Sectional Area for DSS, APSS and its Moment of Inertia, 1755

Using thin- walled assumptions, points A and E are assumed to be located at A = E, D and H are
located at H = D etc. This is illustrated in figure 6.
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—+ E ¥ F
3a 1 »lq >
+— H * G
v _ _

Figure 6: Thin — Walled assumption for DSS
Thus, we obtain our cross- sectional area as
APSS = ¥ A; =3at+ 2at + 3at + 2at = 10at

(48)
Asti = to =t3 = 14
(49)
And our working moment as
10at?
1955 = 1, = 242803

(50)
3.2. TPEF FOR DSS DIFFERENT BOUNDARY CONDITION CASES
3.2.1. CASE 1: PINNED —PINNED [S-S] THIN- WALLED BOX COLUMNS

From Eqgn. (47), v, the transverse displacement is defined in Eqn.(3). Using only the first two
terms,

V= ¢t
(51)
where ¢, and ¢, are the polynomial shape functions defined in Eqns.(18) and (34) respectively
for Pinned —Pinned boundary conditions as shown in figure 7
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Y
A —
L initial shape
X |e deflected shape
v p

Figure 7: Pinned —Pinned Boundary Condition For Thin— Walled Box Columns
Thus,

2 2 3
v = V30— +5]+eV2I0 [ - 35 + 2%

(52)

Let B = %
(53)
= X = BL
(54)
K dx =Ldp
(55)

Thus Egn. (52) becomes

v = V30[-B + B2+ V210 [B — 3p% + 28°%]
(56)

To obtain v2, we square Eqn.(56)
Thus,

vZ = [—c,BV30 +¢;1B2V30 + ,fV210 —3c,p*V210 + 2¢,p*V210] 2
= 30 ¢;2B% — 30c,2B% — ¢,¢,p?V6300 + 3c;c,p3V6300 — 2¢,¢c,B4V6300
-30¢;%B% + 30c¢,%B* + ¢1¢,p3V6300 — 3¢, 46300
+2¢,¢,p%vV6300 - ¢;c,f2V6300 + c;c,B3vV6300 + 210c¢,2B3
+30 ¢,2B*(210)- 6 c,2B>(210) — 2c;¢,B*V6300 + 2c;c,B*V6300
+2¢,¢,%V6300 + 2 ¢,2p*(210)- 6 c,2B5(210)+ 4 c,2B°(210)
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(57)
vZ = 30 ¢, 2B% — 60c,2B3 + 30¢,%B* — 2¢4¢,B2V6300 + 8c;c,p3V6300
'10 C1CZB4V 6300 + 4C1CZBS V 6300 + 210C2262 -

1260c,%B3 + 2730c,2B* — 2520¢,2p% + 840 c,2pS
(58)

To obtain v’, we find the first derivative of Eqn. (56)
v =—c;V30[—1 +2B]+ V210 [1 — 6B + 6pB?]

=—c;V30  + 2¢,BV30 + V210 — 6¢,V210 + 6¢,2V210
(59)

To obtain (v')?, we square Eqn.(59)
(v)?=[-c1V30  + 2¢1BV30 + V210 — 6¢,Bv210 + 6¢,$°v210]
= ¢,2(30) — 2¢,%B (30) — ¢,¢,v/6300 + 6¢;,¢,8 /6300
-6 c;1¢,B%V6300 - 2¢,%B (30) + 4¢;,2B%(30) + 2¢;,¢,p V6300 —
12¢,¢,p? V6300 + 12¢,¢,% V6300 - c;c, V6300 +

2
2¢,6,B V6300 + ¢,% (210) — 6¢,2B (210)T 662"(210) 4 ¢ ¢ 66300 -12
c1¢,P%V6300 - 6¢,%B (210) + 36¢,2 B2(210)
_36¢,2 B3(210) — 6¢,c,B2 V6300 + 12¢,c,8° 6300 +

6¢,2 B2(210) — 36,2 B3(210) + 36¢,% B*(210)
(60)

After simplification, (v')? becomes
(v)?= 30c¢;* — 120¢,%B + 120c,2B% — 2¢;,¢,3/6300 + 16¢,¢,/6300
-36¢,¢,2V6300 + 24c¢,c,B3V6300 + 210c,%- 2520c,%B +

10080c¢,2p2 — 15120c¢,2p3 + 7560c¢,2p*
(61)

To obtain v* we evaluate the second derivative of Eqn. (56)

vt = 2¢,4/30- 6¢, V210 + 12c,pV210
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(62)

Squaring Eqgn. (62), we have,

(v'H)2=[2¢;V30 — 6¢, V210 + 12¢,f+/210] 2
= 4¢,%(30) —  12c;¢,V/6300 + 24c;c,$ V6300 —
12¢,¢,7/6300 + 36¢,%(210)- 72¢,2B(210) + 24c,c,p V6300

- 72¢,2B(210) + 144c¢,2B%(210)
(63)

(v'H?% = 120¢,% — 24¢,¢,7/6300 + 48¢,c,f /6300 +

+ 7560c,2- 30240c,2B + 30240c,2B?
(64)

Thus, Eqgns. (58), (61) and (64) can now be substituted into Eqn. (47) for further evaluation.
Let us rewrite Eqn. (47) as under:

S—S_ DSS S-S DSS S-S DSS S-S DSS S-S
kq TR A PR PR Y SRR PRl R M

Tpss=
(65)
Where

@,°7% = [v?x*(2L — x)%dx

@

(66)
Noting Eqgns. (53), (54) and (55), we have
015 = [ v? BL2(2L — BL)*LAP
0575 = [ [4B2L° — 4B°L° + B* LS]v2dp
(67)

Where the symbols, S-S denotes a Pinned- Pinned column, that is simply supported a both ends
and DSS denotes Doubly Symmetric Single cell cross-section

97 = [ )7 dx
(68)
Also noting Egns. (53), (54) and (55), we have
SO - a1 )
dx Ldp L
(69)

( VIX)Z = Liz ( vlﬁ)z
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(70)
INTACORNNE N I1(:)
LZ
(71)
1
And (vllx)z — = (vllﬁ)z
(72)
Thus,
05 = [N LdB= [ ;) ?dp
(73)
95 = [w)2dx
(74)
05 = [, zN? Ldp= [, 5™ ?dp
(75)
0575 = [P dx= [, ()2 dp
(76)

Evaluation of ¢,5%
Substituting Eqgn. (58) into Eqn. (67) yields:
0575 = [{[4B*L° — 4B°L° + B* L7][30 ¢,*B? — 60c,*B + 30c¢,*B* —

2¢,c,B%v6300 + 8¢,¢,B3v6300 -10 ¢;c,*V6300 + 4c,c,°V6300 +
210c¢,2B% —

1260c,2B° + 2730c,%B* — 2520c,%B° + 840 ¢,?p°]} dp
(77)

@575 = [{120c,2B*L% — 240¢,*B5L° + 120¢,*B® L° — 8 ¢1¢,B*L°V6300
+32 ¢,¢,B°L*V6300 — 40 ¢1¢,B°L°V6300 +16 ¢1¢,7L*V/6300 +840c,*B*L?
—5040c,°B°L® + 10920c,B°L® — 10080c,°B7L® + 3360c,*B°L® -
120¢,°B3L% + 240¢,*BOL? —=120c,2B7 L® + 8 ¢;¢c,B°L*V6300
—32 610, B°L*V6300 + 40 ¢1¢,p7L5V6300 —16 ¢1¢,p°L>V6300 — 840c,*B°L?
+5040c,2BL> — 10920c,2B7L> + 10080c,2BEL> —3360c,2B°L>

+30c,2B5L5 — 60c,2B7L5 + 30c,2B8 L5 — 2¢,¢,pOL5V6300
+8 ¢,¢,B7L5V6300 — 10 c,c,8L5V6300

+4 ¢,¢c,B°L3V6300 +210¢,2B8L> — 1260¢,%B7L° + 2730c¢,2B8L° —
2520c,2B°L> +
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840c,2B10L5}dp
(78)
@°7% = [{120c,*B*L° —360c,*B°L> +390c,*B° L° — 180c,*B” L°
+30c,2B8L° — 8 ¢,¢,B*L°V6300 + 40 ¢;c,B°L>V6300 -744 ¢, c,°L5\/6300
+64 ¢;c,B7L5V6300 - 26 c,c,p8L°V6300 + 4 ¢,c,B°L5V6300 +
840c,%B*L>
—5880¢,2B°L> + 16170c,2B°L> — 22260c,%B7L> + 16170c,%p8L>
—5880c,2B%L% + 840c,%B1°L%]dp
(79)

Simplifying ¢,5~5 further, we have:

s_s _ 120c42L%  360c, 2Lt + 390c;2L'%2  180c¢;2L13 + 30c1 %L 8cqc,v6300 L0

P1 5 6 7 8 9 5
+ 40c1¢2V/6300 LT 74c4c,1/6300 L1? + 64c1cV6300 L3 26¢1c,V/6300 L4 + 4c,c,\/6300 L1° +

6 7 8 9 10
840c,2L1°  5880c,2L1t + 16170c,%2L2  22260c,2L13 + 16170c,2L  5880c,2L15 + 840c,2 L1
5 6 7 8 9 10 11

(80)
Thus ,

390c¢,2L1? 10c1 2L 8c1c,V/6300 L1°

5

©1°7° = 24¢,? LY — 60c, L + —10¢,%L" +

+

20c,c2vV6300 LY 74c¢,c,V/6300 L1? 26¢1c3V6300 L4
123 - 127 + 8 ¢,¢,v6300 L13-++

2¢,c2V6300 L15 5565c,2L13 + 5390c,2L1*
5

+168c,2 L1° — 980¢,2L11+2310¢,% [1? — 222 :

840c,2L16

588c,2% L1° + =z

(81)
Evaluation of ¢,5%
Substituting Eqgn. (61) into Eqn. (73) yields:
02575 = [{7[30c,2 —120¢,2 B +120c,2F2 — 2 c1¢,V6300 +16 ¢;c, V6300 —
36 c1c,8% V6300 + 24 ¢y, V6300  + 210c,% — 2520c¢,2
+10080c,2? — 15120¢,%p> + 7560c,%B* ]}

(82)
Integrating Eqgn. (82) gives:
2n2 23
0575 = 2[30c,2p — 2 + AP 96,6,6V6300
+16 c1c28?% /6300 _ 36 c1c23 V6300 + 24 c1c, 8% 6300
2 3 4
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n 210C22,8 _ 2520c,%p? + 10080c,*B%  15120c,%B* n 7560c,23* 16
( ) 2 3 4 5
83
92575 = 2[30c;2L — 60c,? L2 +40c,2L3 — 2 ¢;c,V/6300 L

+8 c,c, V6300 L2 — 12¢,c, V6300 L3 + 6 c;cp V6300 L* + 210c,%L —
1260c,212

+3360c,2L% — 3780c,2L* + 1512¢,2L° |
(84)

(pZS_S = [30C12 - 60C12 L +4‘0C12L2 - 2 C1C2V6300

+8 cyc, V6300 L-12c¢,c, V6300 L2 + 6 ¢y, V6300 L3 +210c,%2 —
1260¢,2L

+3360c,2L2 — 3780c,2L% + 1512¢,21* ]
(85)

Evaluation of ¢35

Substituting Eqgn. (64) into Eqn. (75) yields:

03575 = [{5[120c,?  — 24 ¢,c,V6300 + 48¢1c,pV6300  + 7560c;>
30240¢,28

+30240c,282 1}dp

(86)
2
03575 = 2[120c,2f  — 24 1c;V/6300 p +2 22 YR
22 2R3
+ 7560622ﬁ i 3024022 B + 302403c2 B ]6
(87)
(pgs‘s = %[120(:12L — 24 ¢,c,V6300 L + 24 ¢c4c, V6300 L?
+ 7560622L - 15120C22L2 + 10080C22L3 ]
(88)
s—s _ 120¢,2 244216300 + 24 c;c, V6300
P3 T2 12 L
7560c,2 15120c;,?
= - 2. +10080c,?

75


http://www.ajpojournals.org/

American Journal of Computing and Engineering A J P @
ISSN 2520-0449 (Online)
Vol.4, Issue 1, pp 57-82, 2021 www.ajpojournals.org

(89)
Evaluation of ¢,5%
From Eqgn.(80), we have that:
0575 = @55 = [ ~(w)? dp
(90)
Thus, from Eqn. (85)
0575 = [30¢,2 —60c,?2 L +40c,%L? — 2 c,c,7/6300

+8 c¢yc, V6300 L-12cyc, V6300 L2 + 6 cicy V6300 L3 + 210c¢,% —
1260¢,2L

+3360c,212 — 3780c,%L3 + 1512¢,2L* ]
(91)

Thus, the Total Potential Energy Functional for the Pinned-Pinned DSS thin- walled box column,
m5ss is obtained by substituting the equations for @575, ¢,575, @355 and @,575 into
Eqn. (65) .

That is substituting the Eqns. (81), (85) (89) and.(91) into Eqgn. (65) yields:
mhss = k"% 005754 k"% 0,575 + ksPP a5 — k0,578

10c 2L 8c,1¢,\/6300 L1°
5

390c,2L1?

= k"% [24¢,2 L' — 60c, 21 + —10c, 211 +

20c,¢3vV6300 LYY 74c¢,c,V/6300 L1? 26¢1c3V6300 L4
+ =2 3 - = - + 8 ¢,c,v6300 L3 - “f-"
2¢1¢3/6300 L15 5565c,2L13 +
5

+168c,2 L' — 980¢,2L'1+2310¢,% L'? — .

5390c,2L14
3

840c, 2L ]
11

+ k,”5°[30¢,2 — 60c,2 L + 40¢,2L% — 2 ¢,¢,7/6300
+8c,c, V6300 L-12¢,c, V6300 L2 + 6 ¢icp V6300 L3 4 210c,2 —

- 588c,% L +

1260C22L
+3360c,2L% — 3780c,%L3 + 1512¢,2L* ]
120c¢,2 24 V6300 24 V6300
+ k3DSS [ LZC1 _ C1CLz2 + C1CZL
+ 7560c,2 ) 15120c,2 + 10080622]

LZ
—k4DSS [30C12 _ 60C12 L + 40C12L2 -2 C1C2\/6300

+8 ¢;c, V6300 L-12¢,c, V6300 L2 + 6 ¢yc, V6300 L3
+210c,2 — 1260c¢,L
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+3360c,2L2 — 3780c,2L% + 1512¢,21* ]

(92)

Where

J. DSS = APSSp? pss _ APSSg jc.DSS = E [PSS 0SS = P
1 - gE12(DSS) ! 2 2 ) 3 - 2 4 2

(93 - 96)

APSS and IP5Sare defined in Eqns.(48) and (50) respectively. P is critical buckling load
3.2.2. CASE 2: FIXED-FIXED [C-C] THIN-WALLED BOX COLUMN.
P

\ /

P
// 71? /
Figure 8: Fixed- Fixed Boundary Condition for Thin- Walled Column.
Here, using Eqn. (51)

V= it
(97)
where ¢, and ¢, are defined in Eqns.(40) and (41) respectively for fixed —fixed boundary
conditions.

Substituting Eqgns. (40) and (41) into Egn.(97) gives:
V=G W70 G -6VT0 5 +3VT0 D14 [-3VTT0 4 +120770 L -15V770
4

x
Iz

+ 6V70 ’If—z

(98)

Substituting Eqgn. (53) into Egn.(98) gives:

vV = 3c;V70 B%-6¢;V70 B3 +3¢c;V70 B —3c,\/770 B2
+12¢,7/770 B3 - 15¢c,W/770 B* +6c,/770 B°
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(99)
And after evaluation and simplification, we obtain that

c-C — DSS c-C DSS c-C DSS c-C DSS c-C
Tpss = ki7" @170 k7T "7 + k3T il PR

16380c,2L16

= ky"* [360c,? L'? — 1575¢, 213 + 2870¢,2 LM~ 27726, [} + ———

2718 12
- 420,217+ 20— AR 4 63¢,¢,53900 L1 -

2028¢;¢,/53900 L5  1836¢;c,1/53900 L16
162¢,¢,v53900 L4+ L 210 — L 211 +

19
87¢,c,v/53900 L7 — 24¢,c,V/53900 L18+ 36C1€“fj9°° L+ 3960c,2 112 —

31185¢,%L13 + 105490¢,2 L'* — 1995840c¢,2L5 + 230580c,% L6 —
166320c,2117+

949410c, *L18

—17820¢,%L*° + 1848c,2%L*°]
+k,P55 [840c,2L2 — 3780c¢, 213 + 6552¢, 2L* — 5040¢, L5 + 1440c,%L8

- 24¢,¢,\/53900L2 + 171¢,¢,V53900L3 - 432¢,c,V/53900L* +
564¢,c,v/53900L5 - 360c,¢,v53900L8 + 90c,c,vV53900L7 + 9240c,2L2 —
83160c,2L3 + 310464c,2L* —

600600c,2L5 + 633600c,2L5- 346500c,2L7 + 77000c,2L?]

DSS [2520c12 B 8820c;2
LZ

72cq1¢c3 V53900 +

+ k3 L2

648c¢1c, V53900
L

+40320c,2- 45360c,2L + 18144c,2L2-

- 2592¢,¢, V53900 + 4896¢;c, V53900 L -4320¢,c, V5390012 +

27720c,%  332640c,2
2

1440c;c, V5390013 +

7650720c,2L2 — 5544000c,2L3 + 1584000c,2L* |
—k,”5 [840c 212 — 3780c;2L3 + 6552¢,2L* — 5040¢, 2L° + 1440c¢,2L°

- 24¢,¢,V/53900L2 + 171¢,c,v/53900L3 - 432c,c,V53900L* +

564c,c,V53900L5 - 360c,¢,V53900L° + 90c,c,V53900L7 + 9240c,212 —
83160c,2L3 + 310464c,2L* —

600600c,%L> + 633600c,%L°- 346500c,2L” + 77000c,%L8 ]

+ 1884960¢,2 — 5266800c,>L +

(100)

Where k%55, k,”5%, kS and  k,P%5  are defined in Eqgns. (93), (94), (95) & (96)
respectively.
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3.2.3. CASE 3 : FIXED-PINNED [C-S] THIN-WALLED COLUMN
P

/A

A

Figure 9: Fixed-Pinned Boundary Condition for Thin- Walled Box Column.
Using Eqn.(51),

V= g+,
(101)

Where ¢, and ¢, are defined in Eqns.(45) and (46) for Fixed-Pinned Boundary Condition.
Substituting Eqns.(45) and (46) into Eqn. (101) vyields:

9M x%>  15M;x3  6Myx 3Myx2  141M,x3  159M,x*  21M,x°
(102)
Where Ml—ﬁ & Mz—m
(103 - 104)

Substituting Eqn.(53) into Eqn. (102) yields:
V = 9¢;M; B?—15¢;M; B3 + 6¢, My B* —3c,M, B? + 141c, M, B3 -

159¢,M, B* + 21c,M, °
(105)

And after evaluation and simplifications, we obtain that :

c-S _ DSS c-S DSS c-S DSS c-S DSS c-S
Tpss = ki 77 @177+ kT "0+ ks T3 T —ky T @y
= . DsS [22680012 L'  98280c,* L® + 174510c,* L'*  162540c, L'° + 83790c, % L6
1 133 152 171 190 209
22680c, % L7
228
+2520012 L18 216C c V53900 112 + 10728C c V53900 113
247 7 172 2693 172 2693
39078c c \/53900 114+ 58500C c v/53900 115 44640C c v/53900 16 +
9 172 7693 10 172 2693 11 172 2693
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18000 V53900 ;17 3546 V53900 g 252 V53900 19
1z 12 s L 3 G162 e L T2 G162 o5 L
+ 27720c,% L1?
1729
) 2633400c,2 L13 + 66784410c22L14__203312340c221}5 + 250637310c,2 L1
1976 2223 2470 2717
_ 151295760c,2 L7 + 45952830622L18__6500340622L19 + 339570c,2 L2° ]
2964 3211 3458 3705
Tk DSS [22680612 L? B 113400c,2 L3 + 202230c,2 L* B 151200c, 2 LS + 40320c,? L® )
2 57 76) 95 114 133
216 V53900 5 , 15768 V53900 ,3 61254 V53900 4
= 102 s L + 7 102 a3 L>- 5 €102 s L* +
81324 V53900 5 39978 V53900 ;¢ , 5040 V53900
” clcz—m L°- ——C1C2 NTE L° + 5 C1C2 1553 L
27720c3% L2 3908520c,2 L3  143497970c,%2 L*  415273320c,2 L°
741 B 988 1235 - 1482
+ 379861020c,2 L® B 102841200c,2 L7 + 8489250¢;2 LS]
1729 1976 2223
+ k3p55 [22680612 B 226800c; 2 + 748440c,? B 907200c,2 L + 362880c, 2 L? _ ﬁclcz \/53900
1912 38L 57 76 95 12 V4693
31536 V53900 221832 V53900 480384 V53900 , 350352 V53900 |,
L 1927 s T 3 1% Gaes T PR v L-——ac, V4693 L
60480 V53900 ,3 , 24640c;2  7817040c,2 568731240c,%  2489699520c,2 L
+ C1Cy + — + —
6 V4693 24712 494L 741 988

+ 3350350080c,% L2 123094400c,2 L3 + 135828000c,2 L*
1235 1482 1729

k DSS [22680612 L?  113400c 2 L3 + 202230c,% L* 151200c,2 LS + 40320c,2 L®
4 57 76) 95 114 133
216 \/53900 12

3 172 2693

15768 V53900 ,3 61254 V53900 ., , 81324 V53900 g
C1szL' - C1szl’ + = clcz—mL-

39978 V53900 ¢

T 10 s L° +

+

5040 V53900 ;7 27720c3% L?  3908520c,%2 L3 ~ 143497970c,2 L* 415273320c¢,2 L®
C1C5 L - + -
8 V4693 741 988 1235 1482

379861020c,2% L®  102841200c,2% L7 = 8489250c,2 L8 1
1729 1976 2223

(106)

Where k,%%°,  k,P%5, k3”5 and k,P5°  are defined in Eqns. (93), (94), (95) & (96)
respectively.
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4. CONCLUSIONS AND RECOMMENDATON
4.1 CONCLUSIONS

The study was able to formulate peculiar Total Potential Energy Functionals (TPEF) for DSS
stability analysis. The formulated Raleigh- Ritz based DSS TPEF given in Eqn.(92) for S-S
boundary condition, Eqn.(100) for C-C boundary condition and Eqgn.(106) for C-S boundary
condition are found handy and convenient to be used in the bulking/stability analysis of DSS
cross- sections. The derived expressions will now be used to formulate series of stability
matrices in subsequent publications where the critical bulkling load will be evaluated.

4.2 RECOMMENDATION

For this present work, only the first two coordinate polynomial shape functions were generated
and used for the formulation of TPEF for DSS stability analysis. Thus it is recommended that
additional work should be done using more than first two coordinate polynomial shape functions.
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