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Abstract 

Purpose: The complexity of drilling 

activities has been enhanced by deeper wells, 

the heterogeneous formations, and the need 

to provide cost-effective and time-saving 

hydrocarbon production. One of the most 

important parameters of drilling performance 

is rate of Penetration (ROP), which has a 

direct impact on the efficiency of operations, 

non-productive time (NPT), and costs. The 

traditional mechanistic and empirical ROP 

models that had been important in the past are 

not very useful in nonlinear interaction, 

dynamic drilling conditions, and 

heterogeneous lithologies. However, existing 

reviews lack a structured problem statement 

that clearly identifies the limitations of 

standalone ML and classical ROP models 

under dynamic drilling conditions and the 

need for hybrid frameworks that improve 

accuracy, robustness, and real-time 

applicability. This review addresses this gap 

by systematically analyzing hybrid ML 

approaches and their role in drilling 

optimization. 

Materials and Methods: Improved drilling 

optimization through machine learning (ML) 

methods, especially hybrid ML models, has 

redefined the future of drilling optimization, 

which unites the advantages of various 

predictive models to improve accuracy, 

strength, and generalization. This review is a 

synthesis of literature on hybrid ML 

applications in ROP prediction, which is 

divided into three categories: optimization-

integrated, ensemble, soft computing, and 

physics-informed models. Their 

methodologies, data requirements, real-time 

integration, operational problems, and 

performance in comparison to standalone ML 

models are addressed in the paper. 

Findings: The essential restrictions, 

including data quality, computing aspects, 

and the problem of interpretability, are 

identified, and the future research direction is 

also outlined. The synthesis offers an 

organized scheme of comprehending the 

development of hybrid ML models in the 

drilling optimization and outlines 

opportunities of future progress within the 

limitations of technologies. 

Unique contribution to theory, practice 

and policy: Improved drilling optimization 

through machine learning (ML) methods, 

especially hybrid ML models, has redefined 

the future of drilling optimization, which 

unites the advantages of various predictive 

models to improve accuracy, strength, and 

generalization. 

Keywords: Drilling Optimization, Rate of 

Penetration (ROP) Hybrid Machine 

Learning, Physics-Informed ML, Real-Time 

Drilling 
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INTRODUCTION 

Drilling operations undergo tremendous changes due to the incessant need of hydrocarbons, 

the complex reservoirs, and the constant move towards deeper and more technical wells[1]. 

When wells are drilled into high pressure and high temperature (HPHT) environments, and 

non-traditional formations, the drilling difficulties manifested in low rate of penetration (ROP), 

excessive vibration, inadequate bit choice and lithological variability are exacerbated [2]. 

These complexities have increased the desire to have efficient drilling optimization strategies 

that will help to reduce non-productive time (NPT) to minimize operational risks and improve 

overall drilling efficiency. Optimization of drilling has thus become a major field of focus in 

the petroleum engineering sector with multidisciplinary intervention that aims at enhancing the 

performance of the drilling process with minimal cost and time. 

The ROP is one of the most important and significant indicators that are used to determine 

drilling performance [3]. ROP is a direct measure of the drilling efficiency since it establishes 

the speed at which a well will reach the target depth. An increased ROP will have the effect of 

decreasing the duration of the drilling process, this will further decrease the cost of rigs, less 

geological uncertainties, and enhance the rigs operational safety. On the other hand, reduced 

ROP may cause very high NPT, long bit life, and increased variations in the risk of differential 

sticking, formation instability, and unplanned events. Due to the economic and operational 

consequences of ROP, there has been a long time when the petroleum industry has been 

interested in accurate predictability and efficiency of ROP in different geological and 

operational settings. This has placed ROP prediction models as a fundamental element of 

current drilling optimization processes. 

Machine Learning (ML) methods were also embraced by the petroleum engineering 

community as the means of making drilling decisions and increasing the accuracy of ROP 

prediction [4]. The nonlinear, dynamic and multivariate nature of drilling systems tended to be 

hard to explain by the traditional methods like analytical or physics-based models. ML 

algorithms such as Artificial Neural Networks (ANNs), Support Vector Machines (SVM), and 

Random Forests (RF) as well as Fuzzy Logic, Genetic Algorithms (GA) and other evolutionary 

computation algorithms proved to be viable options that can be used to learn complex 

relationships with real-time drilling information. 

Figure 1 shows that the adoption of ML in the drilling processes is accelerating, and it marks 

the key milestones of the use of intelligent data-driven approaches to the optimization of 

drilling operations and ROP forecasting. 

 

Figure 1: Timeline of ML Adoption in Drilling  
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This review is limited to hybrid ML models that are trained in the field of drilling optimization 

and ROP prediction. The synthesis of methodologies, datasets, model structures, and 

comparative performance of hybrid models presented in this paper offers a systematic frame 

of reference under which their development can be examined and existing research gaps that 

preceded the pervasive introduction of advanced deep learning and real-time automation 

systems can be identified. This study adopts a systematic literature review methodology, 

analyzing peer-reviewed journal articles and conference papers focused on ROP prediction and 

drilling optimization using hybrid ML models. Studies were categorized based on model type, 

data sources, optimization strategy, and real-time applicability. 

Fundamentals of Drilling Operations and ROP 

Knowledge of the basics of drilling processes and classical models of ROP is the key to 

understanding the transition to machine learning and hybrid methodology. The factors affecting 

the rate of penetration (ROP) are mechanical, hydraulic, bit-related, and geological factors, 

interacting in non-linear and complex manners [5]. Classical ROP models had a high-early 

predictive capability, but were limited by simplifications and assumptions and were only 

effective in deeper and heterogeneous formations. In this section, drilling mechanics, classical 

ROP models before ML and limitations of these are reviewed and supported by tables and 

figures at appropriate points. 

Fundamentals of Drilling Mechanics. 

Well construction and ROP prediction are based on drilling mechanics. Comprehending these 

parameters can enable the engineers to maximize the efficiency of drilling, minimize the bit 

wear, and non-productive time [6]. 

A. Weight on Bit (WOB) 

WOB is the force applied to the axis to cause rock penetration. It is important to optimize 

WOB; excessively low achieves low ROP whereas excessively high causes bit damage, 

excessive torque or stickslip vibrations that wear out the drillstring. 

1. Rotary Speed (RPM) 

RPM causes variation in the rate at which the bit turns, and this influences rock breakage. The 

high RPM tends to raise ROP in soft formations but may hasten the wear or lead to the 

vibrations of hard lithologies [7]. The best RPM is based on the type of formation and the 

design of bits. 

2. Torque 

Torque is used to denote resistance to rotation that the bit faces. High torque can tell about hard 

formations, bit balling, or ineffective cleaning of holes. The trends of the torque give 

information about formation changes, drilling efficiency, and mechanical problems. 

3. Hydraulics and Mud Flow Rate 

The hydraulic energy is also required to carry the cuttings to the surface, cool the bit and 

stabilize the wellbore. Even in case mechanical parameters are optimized, poor hole cleaning 

may significantly lower ROP. The important variables are pump rate, density of the mud, 

nozzle setting and annular velocity. 

4. Bit Type and Cutter Design 

Bit choice has an impact on rock fragmentation, durability and the ROP that can be attained. 

PDC bits deliver high ROP in homogeneous formation, roller- cone bits deliver better in 
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abrasive formations, and hybrid bits are trying to combine the benefits of both. Long term 

penetration rates are affected by bit wear, cutter geometry or bearing performance. 

B. Traditional ROP Equations 

Classical ROP models tried to measure the correlation between drilling parameters and drilling 

rate with simple empirical equations or physics equations in a simplified manner. 

1. Bourgoyne & Young (B&Y) Model 

The B&Y model is an 8-parameter empirical model which incorporates the WOB, RPM, bit 

wear, hydraulic effects, formation pressure and drillability. It is flexible and needs sensitive 

calibration and assumes log-linear input-ROP associations [8]. 

2. Bingham Model 

The Bingham model is an expression of ROP as a linear relation of WOB and bit diameter. It 

is easy to implement, and only works in shallow or homogeneous geologic formations, and 

does not consider dynamic changes in the drilling conditions [9]. 

3. Gates & Taylor (G&T) Model 

The model G&T takes into consideration bit wear with time, which predicts the reduction of 

ROP in abrasive structures. It is also applicable especially in long drilling periods where bit 

wear has a serious impact on the performance. 

Table 1: Comparison of Traditional ROP Models  

Model Key Inputs Assumptions Strengths Limitations 

Bourgoyne 

& Young 

(B&Y) 

WOB, RPM, pore 

pressure, bit wear, 

hydraulics, 

drillability 

Log-linear 

relationships 

Comprehensive; 

widely used 

Requires heavy 

calibration; limited 

generalization 

Bingham 

Model 

WOB, bit 

diameter 

Linear 

relationship 

Simple, fast Oversimplified; 

inaccurate for 

complex 

formations 

Gates & 

Taylor 

(G&T) 

Bit wear, 

formation 

abrasiveness, time 

Wear-

dependent 

ROP decline 

Good for 

abrasive 

formations 

Poor real-time 

capability; limited 

parameters 

C. Limitations of Conventional ROP Models 

Despite their historical significance, classical models have several drawbacks [10]: 

1. Simplified Mathematical Assumptions 

Linear or log-linear assumptions fail to capture the true nonlinear interactions between WOB, 

RPM, hydraulics, bit wear, and formation properties. 

2. Limited Generalization Across Wells and Formations 

Models require well-specific calibration. Their accuracy declines sharply when applied to new 

wells, different lithologies, or dynamic drilling conditions. 
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3. Inability to Handle Real-Time Dynamics 

ROP is influenced by lithological changes, bit wear, hole cleaning efficiency, and mechanical 

vibrations. Classical models cannot adapt to such variations in real time. 

 

Figure 2: Schematic of ROP Influencing Factors  

Figure 2 shows the aspects of ROP that are affected: the mechanical parameters, i.e. WOB, 

RPM and the torque directly influence bit penetration. Cuttings removal and bit cooling depend 

on hydraulic factors such as the rate of mud flow, nozzle design and annular velocity. Cutting 

efficiency is dependent on bit related factors, such as bit type, cutter geometry, and wear, 

whereas natural limits against penetration are set by geological factors, such as rock hardness, 

formation abrasiveness, and pore pressure. All these factors demonstrate how difficult it is to 

predict the ROP. 

Foundations of Machine Learning in Drilling  

The success of machine learning (ML) application to drilling activities represented a radical 

change of the traditional mechanistic and empirical paradigm to predictive methods. ML 

models were also able to deal with nonlinear, interacting variables, and heterogeneous data to 

enhance the quality of ROP forecasting and the overall drilling optimization. Here, the general 

categories of the most popular ML algorithms, data preprocessing techniques, and metrics are 

presented [11]. 

A. Overview of ML Algorithms Used 

There is a range of ML algorithms that were extensively used in drilling optimization and ROP 

prediction. These algorithms were chosen due to the capacity to reveal the nonlinear patterns, 

generalization across datasets and real-time prediction or near real-time prediction. 

1. Artificial Neural Networks (ANN) 

The role of ANNs is based on the human brain structure, which is composed of a series of 

layers connected by nodes (neurons) capable of learning complicated nonlinearity. ANNs were 

also popularly applied in the prediction of ROP with respect to the inputs, which included 

WOB, RPM, torque, bit type, and formation properties. Their capability to predict patterns 

based on historical data sets made them especially valuable with heterogeneous formations 
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especially when trained on large amounts of data, but generally vulnerable to overfitting unless 

overfitting was closely guarded [12]. 

2. Support Vector Machines (SVM) 

The regression or classification of input data in a high-dimensional space and the locating a 

good hyperplane between classes or a continuous forecasting outcome is the work of SVMs. 

In ROP studies, SVMs were used to make predictions of high/low penetration rate regimes or 

classify lithology zones. They can handle smaller datasets with ease, but are likely to be 

computationally expensive when working with large, multi-variable datasets. 

3. Decision Trees (DT) and Random Forests (RF)  

Decision Trees divide the data into branches with hierarchies as a result of the features to arrive 

at predictions. RFs are better than DTs because they are able to combine multiple trees to 

decrease overfitting and increase predictive stability [13]. These models were extensively 

applied to determine the key drilling parameters affecting ROP, as well as to process 

heterogeneous data sets that have nonlinear interactions between WOB, RPM, hydraulics and 

geological parameters. 

4. Gradient Boosting Machines (GBM) 

GBMs build on a series of weak learners in order to enhance predictive accuracy. They were 

especially handy in modeling continuous ROP data in complicated drilling conditions, and of 

the subtle changes in drilling behavior which might be overlooked by simpler models. 

Nonetheless, they were prone to noisy data and had to be carefully hyperparameter-tuned. 

5. k-Nearest Neighbors (KNN) 

KNN forecasts the results according to their proximity to the nearest neighbors in the feature 

space. It was applied in ROP regression and classification of small to medium datasets. It was 

easy to use and attractive, however, it is sensitive to feature and outlier scaling [14]. 

6. K-means Clustering 

Even though it was not a predictive algorithm, K-means was commonly used to pre-process, 

e.g. to cluster lithologies, operating regimes or drilling patterns. Such clusters would then be 

used as input features to supervised ML models and enhance accuracy of prediction. 
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  Table 2: Summary of ML Algorithms 

Algorithm Typical 

Applications 

Strengths Limitations Typical 

Datasets 

ANN ROP prediction, 

drilling parameter 

optimization 

Handles non-

linearity, 

adaptable 

Requires large 

datasets, prone to 

overfitting 

Sensor logs, 

historical 

drilling data 

SVM ROP trend 

classification 

Works well 

with small 

datasets 

Computationally 

expensive for large 

datasets 

Formation logs, 

drilling 

parameters 

Decision 

Trees 

ROP regression, 

categorical 

outputs 

Easy to 

interpret 

Overfitting if not 

pruned 

Bit parameters, 

WOB, RPM 

Random 

Forest 

ROP prediction, 

feature 

importance 

Robust, reduces 

overfitting 

Less interpretable Multi-well 

datasets, 

MWD/LWD 

Gradient 

Boosting 

Continuous ROP 

prediction 

High accuracy, 

handles 

heterogeneity 

Sensitive to noisy 

data 

Large 

operational 

datasets 

KNN ROP regression or 

classification 

Simple, 

intuitive 

Sensitive to 

outliers, scale-

dependent 

Small sensor 

datasets 

K-means Preprocessing, 

clustering 

lithologies 

Simple, 

effective for 

grouping 

Not predictive 

itself 

Lithology or 

operational 

parameter 

clustering 

A. Data Requirements and Preprocessing 

The quality of input data is very imperative in a successful ML application in drilling. 

Preprocessing is needed so that the models do not learn noise. 

1. Normalization and Scaling 

Normalization or standardization of data was done to prevent bias associated with various units 

or scales of input features. The performance of algorithms, such as KNN or SVM, might not 

be very good without scaling since the magnitude of distance-related calculations would be 

covered by large values. 

2. Outlier Detection and Removal. 

Outliers due to sensor errors or extreme operations or data logging issues were detected and 

eliminated. This measure helped the models to avoid the development of misleading patterns 

that decrease the predictive accuracy [15]. 
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3. Feature Engineering 

Raw inputs were commonly processed into new features to increase the sensitivity of the model 

to the drilling dynamics, including combined WOB-RPM indices, hydraulic horsepower, bit-

specific penetration ratios, or normalized torque factors. The aspect of feature engineering 

played a major role in enhancing the model performance on heterogeneous formations. 

4. Data Quality of Sensors and Missing Data. 

It was important to make sure that MWD/LWD measurements are accurate and consistent. The 

problem of missing data was solved through mean/median imputation, interpolation, or through 

forward filling. Such methods enabled the models to be trained successfully without 

compromising on large sections of data. Figure 3 shows the typical ML model development 

workflow for drilling optimization. The process begins with data collection from sensors and 

historical drilling logs, followed by preprocessing (normalization, outlier removal, and feature 

engineering). Data is then split into training and testing sets, and models such as ANN, RF, or 

SVM are trained and validated. Finally, performance is evaluated using appropriate metrics, 

and results guide ROP prediction and operational optimization. 

 

Figure 3: Workflow of ML Model Development    

A. Performance Metrics Used in ROP Studies 

Assessing the performance of the ML models demanded quantitative measurements in order to 

be reliable and accurate [16]. 
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1. Root Mean Squared Error (RMSE) 

RMSE is a measure of the mean squared differences between the predicted and observed ROP, 

a fact that predisposes it to any large error. Continuous ROP prediction tasks are generally 

reported to use it. 

2. Mean Absolute Error (MAE) 

MAE is used to analyze average differences between the predicted and measured values in an 

intuitive and strong measure of prediction error. 

3. Coefficient of Determination (R2) 

R2 represents the percentage variation of ROP that can be explained by the model. The lower 

the values, the higher the predictive capacity. 

4. Metrics of Accuracy and Classification. 

The measures to evaluate model performance were accuracy, precision and recall in instances 

that ROP was categorized (e.g. high/medium/ low). Comparisons between these measures 

between the algorithms enabled the researchers to determine the most appropriate ML method 

to use in their datasets. 

Despite extensive application of standalone ML techniques for ROP prediction, gaps remain in 

handling data scarcity, operational non-stationarity, and physical inconsistency across wells. 

These limitations motivate the exploration of hybrid ML models that integrate optimization, 

ensemble learning, soft computing, and physics-based constraints. 

Hybrid Machine Learning Models for Drilling Optimization  

Hybrid machine learning models denote a major change in the optimization of the drilling 

process, especially in the forecasting of the Rate of Penetration (ROP). Scholars understood 

that isolated ML models or classical mechanistic methods had drawbacks in generalization, 

ability to navigate nonlinearities, and capability to capture complicated operation states. These 

problems are solved by using Hybrid ML models, which can be used to improve the predictive 

accuracy, robustness, and applicability of heterogeneous formations through the combination 

of many methods. This section refers to the hybrid ML models, justifies their significance and 

outlines the key types applied [17]. 

A. Definition and Importance of Hybrid ML Models 

Hybrid ML models combine two or more predictive methods and exploit their respective strong 

points as well as eliminating the weaknesses of each. They may be generalized into four: 

1. ML + ML 

Multiple machine learning algorithms can be used together to improve the performance of 

prediction. Such examples are ANN-GA (Artificial Neural Network -Genetic Algorithm) or 

RF-PSO (Random Forest -Particle Swarm Optimization), where a single ML model makes 

predictions, and the other optimizes the parameters, improves the feature selection, or removes 

overfitting [18]. 

2. ML + Statistical Models 

Part hybrid models include some models that use both data-driven learning with MLs and 

traditional statistical models and seek to take advantage of both data-driven learning and 

existing known probabilistic relationships. This fusion enables models to be interpretable and 

at the same time enjoy the flexibility of ML. 
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3. ML + Physics-Based Models 

Classical mechanistic ROMs, like Bourgoyne and Young or Gates and Taylor are used with 

ML algorithms who make predictions of residuals or corrections. This is to make sure that 

predictions do not compromise known physical relationships but they also capture the 

unmodeled nonlinearities and formation variability. 

4. ML + Fuzzy Logic 

Fuzzy-logic based hybrids (as in ANFIS (Adaptive Neuro-Fuzzy Inference System)) or FANN 

(Fuzzy + ANN) are neural networks that use the interpretability (uncertainties) and uncertainty-

handling of fuzzy systems, along with its learning power. The models are efficient where the 

data is noisy, incomplete or uncertain. 

The significance of hybrid ML models can be explained by their capability to enhance the ROP 

predictions during complex drilling conditions, decrease non-productive time, and fund the 

data-based optimization decision-making of real-time operations. 

A. Categories of Hybrid Approaches 

Hybrid ML approaches were developed in four major categories based on their integration 

strategy and functional objectives. 

1. Optimization-Integrated Hybrid Models 

Hybrids are machine learning models that are optimized with global optimization tools in order 

to optimize the model performance. ANN-PSO (Artificial Neural Network – Particle Swarm 

Optimization) and ANN-GA (Artificial Neural Network -Genetic Algorithm) achieve the 

optimization of weights and biases of the neural networks to avoid local minimums and 

enhance generalization. SVM-PSO (Support Vector Machine -Particle Swarm Optimization) 

optimizes hyperparameters like of kernel type, regularization to achieve highest predictive 

precision. RF-GA (Random Forest -Genetic Algorithm) uses GA to select the most useful 

features and modify tree parameters, which minimises overfitting. These models increase the 

accuracy of ROP forecasts of various formations and drilling environments. 

2. Ensemble Hybrid Models 

Ensemble hybrid models represent a set of ML algorithms that use their joint predictive ability. 

Bagging (Bootstrap Aggregating) mitigates variance by training base learners on resampled 

datasets as in the case of Random Forests. Sequential training gives more weight to the 

instances that a weak learner predicts poorly and boosting the training is a method to train weak 

learners, with Gradient Boosting Machines and AdaBoost being common in ROP prediction. 

Stacking combines the predictions of many models by employing a meta-learner to generate 

better accuracy than the single models. Ensemble methods are especially useful when operating 

with heterogeneous data and modeling nonlinear and complex relationships in the drilling 

process. 

3. Soft Computing Hybrid Models 

Machine learning and fuzzy logic is combined in soft computing hybrids to deal with 

uncertainty and inaccuracy in drilling data. ANFIS (Adaptive Neuro-Fuzzy Inference System) 

is a mixture of the learning ability of ANN and the interpretability of fuzzy rules, which can be 

used to make accurate and explainable predictions. Fuzzy logic is employed by FANN (Fuzzy 

+ ANN) frameworks to fuzzify the features and ANN to learn the pattern by taking the data. 

These models work in a noisy or uncertain operational setting (i.e., changing lithology, 
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unreliable sensor measurements or changing drilling conditions) and enhance the accuracy of 

ROP prediction in areas where more traditional ML models tend to fail. 

4. Hybrid Models with Physics in Mind 

Physics informed hybrid models combine classical mechanistic equations of ROP and ML-

based corrections. ML predictions of residuals or deviations are added to baseline predictions 

by models such as Bourgoyne & Young or G&T to accommodate nonlinearities or changes in 

operations that are not modeled and the non-homogeneity in lithology. This is a more physical 

view of prediction that makes the predictions physically significant, but with the adaptability 

of ML. The so-called physics-informed hybrids were common knowledge in the field of 

research that enhances the efficiency of ROP predictions without the necessity to have 

extremely large datasets, which is the one that unites the gap between the data-driven and the 

physics-based methods. 

ROP Prediction Using Hybrid ML 

ROP prediction with hybrid machine learning models showed a high level of improvement 

compared to traditional machine learning and mechanistic ones. These models were used on 

different types of wells, drilling conditions and working conditions, with improved predictive 

capability, flexibility and strength. This part revisits the literature on hybrid ML applications 

in vertical and deviated wells, real-time optimization systems, case studies of large oil regions, 

and performance comparison with the traditional ML models [19]. 

A. Hybrid Models Applied in Vertical & Deviated Wells 

The first extensive application of hybrid ML models was in vertical wells because the drilling 

environment was not that out of control, and thus researchers could validate how the models 

performed. ANN-GA and ANN-PSO models were prevalent and parameters of the neural 

networks were optimized to represent nonlinear interactions between WOB, RPM, torque, and 

formation properties. By systematically tuning the weights, biases and feature selection these 

models enhanced predictions of ROP, and surmounted the problems of local minima that 

plagued traditional ANN models. 

In deviated or directional wells, there is more complexity in operations because of torque 

variation, stick-slip and effective WOB change across the well path. The hybrid algorithms RF-

GA and SVM-PSO were used to consider such dynamic effects and the interactions between 

mechanical, hydraulic, and geological factors were finally modeled. Investigations indicated 

that hybrid models always minimized the errors in prediction in contrast to single ML models, 

indicating their versatility in complicated drilling operations. The early applications formed the 

basis of more sophisticated predictive systems that were used in the later years, which were 

real time. 

B. Hybrid Models for Real-Time ROP Optimization 

Drilling optimization systems were real-time hybrid ML models that were used to continuously 

predict the ROP and aid operational decision-making. The systems were a combination of live 

data of MWD/LWD tools and models like ANFIS, FANN, or ANN-GA to give real time advice 

on drilling parameters. As an example, in cases where formation hardness or bit wear was not 

predictable, the hybrid model had the capability to dynamically adjust WOB, RPM, and mud 

flow rates, keeping optimal ROP and minimizing non-productive time (NPT) and bit wear [20]. 

The experience of these initial applications proved the possibilities of hybrid ML in the real-

time applications. They demonstrated that hybrid models were capable of dealing with sensor 

noisy data, sensor missing information or sensor uncertain data giving sound predictions in 
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dynamic operational circumstances. The experimental design of optimization-based techniques 

within real-time processes also emphasized the possibility of integrating ML and operational 

decision support processes to improve the performance of continuous drilling. 

C. Case Studies Summary  

A number of case studies have demonstrated the efficiency of combined ML models in a 

number of geological and working conditions: 

1. Middle East Fields 

ANN-PSO and ANN-GA methods were tested on the sandstone and carbonate sandstone. 

These experiments showed that RMSE errors decreased by 15-25 percent as compared to 

ANNs alone, which showed the significance of feature selection and optimization of complex 

reservoir scenarios. 

2. North Sea 

Hybrids RF-GA and SVM-PSO were applied in offshore wells where the trajectories were 

deviated and the torque varied. Such models managed to capture the aggregate impact of 

mechanical variations, directional drilling, and variability in the formations that were more 

precise in predicting the ROP as compared to the standard ML models. 

3. US Shale Plays 

 ANFIS and FANN models were employed to explain extremely heterogeneous lithology, 

variable pore pressure and extreme abrasiveness conditions in unconventional shale formation. 

Hybrid models were found to be robust in tricky drilling conditions as they were found to retain 

prediction accuracy over a number of wells and operational regimes. 

4. Offshore Deepwater Wells 

ANN corrections were applied to deepwater wells with physics-informed hybrids between 

mechanistic ROP models (e.g., Bourgoyne and Young). The models enhanced the 

generalization of wells with limited data, and high variability in their operational 

characteristics, which proved the benefits of combining physical knowledge and ML forecasts. 

A. Performance Comparisons of Hybrid vs Single ML Models 

Regularly the studies showed the superior performance of hybrid ML models in contrast to the 

solitary ML algorithms. ANN-PSO, ANN-GA, RF-GA and ANFIS posted less values of 

RMSE and MAE most especially in the heterogeneous formation and off-track wells [21]. It 

was also discovered that hybrid models were more generalized and adjusted to the change in 

the formation properties, bit wear, and operational changes, with individual ML models often 

being unable to work. Physics-informed hybrids were particularly powerful in scenarios where 

the data is sparse, and ROP equations were applied to make physical consistency of predictions 

with ML so that the residuals would be corrected. Overall, hybrid models were discovered to 

be more precise, stronger, and easier to interpret and are hence a superior means to apply in 

ROP prediction research as Table 4 confirms. 
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Table 3: Summary Table of Performance Metrics   

Study / 

Region 

Hybrid Model Single ML 

Model 

Performance 

Metric 

Improvement 

Middle East ANN-PSO ANN RMSE, R² RMSE reduced 18%, R² 

improved 0.12 

North Sea RF-GA RF MAE, RMSE MAE reduced 22%, 

RMSE reduced 20% 

US Shale ANFIS ANN R², MAE R² improved 0.15, MAE 

reduced 16% 

Offshore 

Deepwater 

Physics-

informed ANN 

ANN RMSE, R² RMSE reduced 20%, R² 

improved 0.14 

1. Integration of Hybrid ML Models in Drilling Optimization Workflows 

The use of hybrid machine learning models in the drilling optimization processes was a major 

move towards data-driven drilling processes. These models were progressively integrated in 

the operation of a decision-making process aimed at enhancing ROP, decreasing the non-

productive time (NPT) and enhancing the overall efficiency in the drilling. This part addresses 

the importance of real-time data acquisition, the initial work in drilling automation, and the 

practical difficulties of the implementation of hybrid ML solutions [22]. 

A. Role of Real-Time Data Acquisition  

Successful application of hybrid ML models in the process of drilling operations requires 

reliable and timely data acquisition. Measurement While Drilling (MWD), Logging While 

Drilling (LWD), and mud logging data feeds gave important information regarding the 

parameters of drilling and the nature of the formations. Downhole parameters that were 

measured using MWD systems included inclination, azimuth, downhole torque, and weight on 

bit (WOB) and geophysical measurements that were offered by LWD systems included gamma 

ray, resistivity, and formation density. Mud logging provided more information on cuttings 

composition, gaseous content and properties of drilling fluids. 

These real-time data streams also provided hybrid ML models with the opportunity to 

dynamically revise predictions in regards to ROP and drilling performance to make proactive 

changes to drilling parameters. The importance of strong data acquisition and transmission 

infrastructure in applications was demonstrated by the significance of high-quality and high-

frequency datasets to properly train the model and also to perform inference in real-time. 

B. Hybrid ML in Drilling Automation  

Hybrid ML systems started being incorporated into semi-automated drilling control systems 

and early digital oilfield programs. This category of systems employed a hybrid model, 

including ANFIS, ANN-GA, physics-informed ML, to give real-time direction on how to 

optimize WOB, RPM, and mud flow rates. Although the concept of fully autonomous drilling 

was still not achieved, there were attempts to prove semi-automatic optimization of drilling, as 

a result of which the role of operators is minimized and drilling accuracy is higher. 

ML models that were hybridized were realized in operational processes to discover the best 

drilling conditions, adequately predict the potential reduction of the ROP caused by the change 

of formations, and give early signals of inefficiencies in operations. This initial integration was 
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the foundation of future systems with full automation or closed-loop drilling operations since 

it had shown that the ML-driven predictions could be helpful in addition to the human decision-

making process in a complicated and real-time setting. 

 

Figure 4: Hybrid ML-Based Drilling Optimization System 

Figure 4 illustrates a full drilling optimization system based on a hybrid of ML. The process 

starts with real-time data collection of MWD, LWD and mud logging systems which is 

preprocessed to remove noise and normalize the inputs. Hybrid ML models like optimization-

integrated, ensemble, soft computing, and physics-informed models interfere with the data to 

predict ROP and provide parameter changes. Semi-automated drilling control systems process 

the output of the models and inform WOB, RPM, and flow of mud. The model predictions are 

constantly updated by feedback loops and dynamic optimization during the drilling operation. 

A. Operational Challenges and Practical Concerns  

Even though they have potential, hybrid ML models are subject to a number of operational 

challenges. Unless filtered or preprocessed, sensor noise and measurement errors of downhole 

tools may severely decrease model accuracy. The small historical data tended to limit the 

extrapolating capability of the model between wells or formations. Any alteration in the 

formation properties or tool behavior with time caused model drift that diminished predictive 

reliability unless the models were constantly updated. 

The problem of overfitting was also typical, especially when ANN hybrids were being trained 

on small datasets. Prediction Uncertainty in predictions because of sparse data, lithology 

changes, environmental factors needed to be carefully considered as part of the operational 

decision-making. To overcome these issues, it was necessary to have powerful preprocessing, 

feature engineering, frequent retraining of models and hybrid systems that could take into 

account domain knowledge or physical constraints to ensure retention of accuracy and 

reliability in real time applications. 

Limitations, Challenges, Research Gaps, and Future Directions  

Based on the reviewed literature, key research gaps include limited model generalization across 

formations, insufficient real-time deployment capability, and lack of interpretability in hybrid 

ML-based ROP prediction. These gaps raise critical research questions on how hybrid 

frameworks can balance accuracy, physical consistency, and operational trust. Although the 
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benefits of the hybrid machine learning models in terms of predicting ROP and optimizing the 

drilling process were proven, there were a number of constraints and challenges that limited 

their use to the full extent. Availability and quality of downhole data was a significant 

limitation. The sensor technology frequently constrained drilling activities, and data gathered 

by MWD, LWD, and mud logging devices were affected by noise, low resolutions, or had gaps. 

These were the problems that had a direct impact on the accuracy and generalization of hybrid 

ML models, in particular, when trying to use trained models in different wells or formations. 

This was also complicated by the absence of standardized benchmark datasets and therefore 

cross-well or cross-field validation was difficult and it was challenging to compare models 

across studies. 

Another major factor was the use of computation constraints. Several hybrid ML models like 

ANN-GA, ANN-PSO and physics-informed models consumed significant computing power 

during training and optimization. These computational requirements frequently made real-time 

application impractical in operational conditions, especially when there was a low capacity to 

provide downhole processing, e.g. in offshore or remote drilling. Also, the black-box nature of 

most of the initial hybrid ML models made them interpretable. The model would frequently 

result in operators and engineers not being in a position to fully learn how the decision can be 

made, so they do not trust automated or semi-automated recommendations and would not apply 

to safety-sensitive operations. 

Table 4: Summary of hybrid ML challenges 

Challenge Description  

Data availability and 

quality 

Limited sensor fidelity, missing values, noisy measurements 

impacting model accuracy 

Lack of benchmark 

datasets 

Difficulty in generalizing models across wells and comparing 

performance between studies 

Computational 

constraints 

High training and optimization time, limited real-time 

applicability 

Interpretability Black-box models reduced operator trust and understanding 

In future perspectives, researchers were expected to move towards a number of directions to 

overcome these challenges and continue exploring and refining hybrid ML applications in 

optimizing drilling [23] . Physics-guided machine learning, or physics-ML fusion, was 

anticipated to enhance model generalization with the integration of both mechanistic 

knowledge and data-driven learning especially in formations that have inadequate data. They 

imagined real-time closed-loop optimization, where semi-automated systems would eventually 

be fully automated, with hybrid-driven drilling control, able to continually adjust WOB, RPM 

and mud flow according to real time data inputs. It was also forecasted that data-driven 

preprocessing would be improved with the enhancement of feature extraction, data fusion 

methods, and more reliable sensors that would strengthen the models and lead to better 

predictions [24]. 

Lastly, it was expected to create more interpretable hybrid ML models, and include the notion 

of Explainable AI (XAI) to ensure the predictions are understandable and practical to operators. 

These requirements highlighted the need to harmonise the three aspects of predictive accuracy, 
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practicality, and reliability of hybrid ML-inspired drilling systems in an attempt to provide a 

definite direction to research and development during that period. 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

Hybrid machine learning (ML) models have already been a groundbreaking discovery in 

optimization of the drilling process and predicting the Rate of Penetration (ROP). Such models 

integrate the power of numerous predictive methods that span neural networks, support vectors 

and random forests to fuzzy logic, physics-based mechanistic models to address the inherent 

shortcomings of either single-purpose ML or classical empirical methods. The hybrid models 

have proven to have a better predictive accuracy, strength, and generalization over 

heterogeneous wells and formations by capturing the complex nonlinear relationships between 

drilling parameters including weight on bit (WOB), rotary speed (RPM), torque, hydraulics, 

bit type, and geological factors. 

Hybrid ML had significant improvements in vertical and deviated wells. Hybrids, where 

optimization was incorporated like ANN-GA and ANN-PSO, were effective in optimizing the 

model parameters helping to avoid local minima and also improving the stability of prediction. 

Bagging, boosting and stacking ensemble models took advantage of the synergies among a 

combination of algorithms to process noisy and heterogeneous data. Hybrids with soft 

computing such as ANFIS and Fuzzy-ANN were useful in dealing with uncertainty and 

imprecision of drilling sensor data, whereas physics-informed hybrids mediated mechanistic 

knowledge with data-driven learning, ensuring physical consistency in prediction with small 

datasets. These models could be integrated in real time with MWD, LWD, and mud logging 

data, which enabled semi-automated adjustments to the parameters, which showed the 

possibility of positive change in operational efficiency, decrease in non-productive time (NPT), 

and supporting decision-making. 

Although such successes were achieved, fragmentation remained in the extensive use of hybrid 

ML models due to a number of limitations. The availability and quality of data were also a 

critical bottleneck as the summery, incomplete, or inconsistent measurements in the downhole 

would influence the reliability of the model. The unavailability of standardized benchmark 

datasets posed a challenge to cross- well generalization and even cross- well performance 

comparisons. The computational requirements of hybrid models, particularly optimization-

based models and ensemble models, restricted their use to real-time or resource-constrained 

drilling contexts. Moreover, the black-box of most of the models impaired their interpretation, 

thereby curbing the confidence of operators and curtailing functional incorporation in vital 

decision-making. 

The next direction was to improve hybrid ML methods, through adding physics-guided 

machine learning, enhancing real-time closed-loop optimization systems, improving feature 

extraction methods and data preprocessing methods, and creating more interpretable and 

explainable models. This set of progressions was projected to lead to additional progression of 

predictive dependability, a decrease in operational hazards, and an even quicker shift towards 

high-intelligent, semi-autonomous, or fully automated drilling operations. 

Overall, hybrid ML models have provided a strong basis in the data-driven drilling 

optimization, which is a strong tool that can be used to improve the prediction of ROP and 

operational efficiency. Hybrid ML frameworks constitute an essential step in the development 

of petroleum engineering methods by resolving the nonlinearity, data heterogeneity, and 

uncertainty issues, as well as integrating the complementary advantages of various methods, 
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which will be a precondition of the future innovations in automated and intelligent drilling 

systems. 

Recommendations 

Future research should focus on developing computationally efficient and explainable hybrid 

ML models that can be deployed in real-time drilling environments. Additionally, standardized 

benchmark datasets are required to enable fair comparison and cross-field generalization of 

ROP prediction models. 

The findings of this review provide practical guidance for drilling engineers in selecting hybrid 

ML strategies for ROP optimization and support researchers in identifying scalable, 

interpretable, and physics-consistent modeling directions for intelligent drilling systems. 
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