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Abstract

Purpose: The complexity of drilling
activities has been enhanced by deeper wells,
the heterogeneous formations, and the need
to provide cost-effective and time-saving
hydrocarbon production. One of the most
important parameters of drilling performance
is rate of Penetration (ROP), which has a
direct impact on the efficiency of operations,
non-productive time (NPT), and costs. The
traditional mechanistic and empirical ROP
models that had been important in the past are
not very useful in nonlinear interaction,
dynamic drilling conditions, and
heterogeneous lithologies. However, existing
reviews lack a structured problem statement
that clearly identifies the limitations of
standalone ML and classical ROP models
under dynamic drilling conditions and the
need for hybrid frameworks that improve
accuracy, robustness, and  real-time
applicability. This review addresses this gap
by systematically analyzing hybrid ML
approaches and their role in drilling
optimization.

Materials and Methods: Improved drilling
optimization through machine learning (ML)
methods, especially hybrid ML models, has
redefined the future of drilling optimization,
which unites the advantages of various
predictive models to improve accuracy,
strength, and generalization. This review is a
synthesis of literature on hybrid ML
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applications in ROP prediction, which is
divided into three categories: optimization-
integrated, ensemble, soft computing, and
physics-informed models. Their
methodologies, data requirements, real-time
integration, operational problems, and
performance in comparison to standalone ML
models are addressed in the paper.

Findings: The essential restrictions,
including data quality, computing aspects,
and the problem of interpretability, are
identified, and the future research direction is
also outlined. The synthesis offers an
organized scheme of comprehending the
development of hybrid ML models in the
drilling optimization = and  outlines
opportunities of future progress within the
limitations of technologies.

Unique contribution to theory, practice
and policy: Improved drilling optimization
through machine learning (ML) methods,
especially hybrid ML models, has redefined
the future of drilling optimization, which
unites the advantages of various predictive
models to improve accuracy, strength, and
generalization.

Keywords: Drilling Optimization, Rate of
Penetration  (ROP)  Hybrid  Machine
Learning, Physics-Informed ML, Real-Time
Drilling
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INTRODUCTION

Drilling operations undergo tremendous changes due to the incessant need of hydrocarbons,
the complex reservoirs, and the constant move towards deeper and more technical wells[1].
When wells are drilled into high pressure and high temperature (HPHT) environments, and
non-traditional formations, the drilling difficulties manifested in low rate of penetration (ROP),
excessive vibration, inadequate bit choice and lithological variability are exacerbated [2].
These complexities have increased the desire to have efficient drilling optimization strategies
that will help to reduce non-productive time (NPT) to minimize operational risks and improve
overall drilling efficiency. Optimization of drilling has thus become a major field of focus in
the petroleum engineering sector with multidisciplinary intervention that aims at enhancing the
performance of the drilling process with minimal cost and time.

The ROP is one of the most important and significant indicators that are used to determine
drilling performance [3]. ROP is a direct measure of the drilling efficiency since it establishes
the speed at which a well will reach the target depth. An increased ROP will have the effect of
decreasing the duration of the drilling process, this will further decrease the cost of rigs, less
geological uncertainties, and enhance the rigs operational safety. On the other hand, reduced
ROP may cause very high NPT, long bit life, and increased variations in the risk of differential
sticking, formation instability, and unplanned events. Due to the economic and operational
consequences of ROP, there has been a long time when the petroleum industry has been
interested in accurate predictability and efficiency of ROP in different geological and
operational settings. This has placed ROP prediction models as a fundamental element of
current drilling optimization processes.

Machine Learning (ML) methods were also embraced by the petroleum engineering
community as the means of making drilling decisions and increasing the accuracy of ROP
prediction [4]. The nonlinear, dynamic and multivariate nature of drilling systems tended to be
hard to explain by the traditional methods like analytical or physics-based models. ML
algorithms such as Artificial Neural Networks (ANNs), Support Vector Machines (SVM), and
Random Forests (RF) as well as Fuzzy Logic, Genetic Algorithms (GA) and other evolutionary
computation algorithms proved to be viable options that can be used to learn complex
relationships with real-time drilling information.

Figure 1 shows that the adoption of ML in the drilling processes is accelerating, and it marks
the key milestones of the use of intelligent data-driven approaches to the optimization of
drilling operations and ROP forecasting.

Early ANN Integration of Emergence
Applications real-time of Hybrid ML
MWD /LWD data Models
Rise of
SVM/RF
@
2005-2010 2010-2014 2015-2018 2018-2021

Figure 1: Timeline of ML Adoption in Drilling

https://doi.org/10.47672/ejt.2859 71 Verma et al. (2024)



European Journal of Technology

AIPT
ISSN 2520-0712 (online)

Vol.8, Issue 6, pp 70-88, 2024 wWww.ajpojournals.org

This review is limited to hybrid ML models that are trained in the field of drilling optimization
and ROP prediction. The synthesis of methodologies, datasets, model structures, and
comparative performance of hybrid models presented in this paper offers a systematic frame
of reference under which their development can be examined and existing research gaps that
preceded the pervasive introduction of advanced deep learning and real-time automation
systems can be identified. This study adopts a systematic literature review methodology,
analyzing peer-reviewed journal articles and conference papers focused on ROP prediction and
drilling optimization using hybrid ML models. Studies were categorized based on model type,
data sources, optimization strategy, and real-time applicability.

Fundamentals of Drilling Operations and ROP

Knowledge of the basics of drilling processes and classical models of ROP is the key to
understanding the transition to machine learning and hybrid methodology. The factors affecting
the rate of penetration (ROP) are mechanical, hydraulic, bit-related, and geological factors,
interacting in non-linear and complex manners [5]. Classical ROP models had a high-early
predictive capability, but were limited by simplifications and assumptions and were only
effective in deeper and heterogeneous formations. In this section, drilling mechanics, classical
ROP models before ML and limitations of these are reviewed and supported by tables and
figures at appropriate points.

Fundamentals of Drilling Mechanics.

Well construction and ROP prediction are based on drilling mechanics. Comprehending these
parameters can enable the engineers to maximize the efficiency of drilling, minimize the bit
wear, and non-productive time [6].

A. Weight on Bit (WOB)

WOB is the force applied to the axis to cause rock penetration. It is important to optimize
WOB; excessively low achieves low ROP whereas excessively high causes bit damage,
excessive torque or stickslip vibrations that wear out the drillstring.

1. Rotary Speed (RPM)

RPM causes variation in the rate at which the bit turns, and this influences rock breakage. The
high RPM tends to raise ROP in soft formations but may hasten the wear or lead to the
vibrations of hard lithologies [7]. The best RPM is based on the type of formation and the
design of bits.

2. Torque

Torque is used to denote resistance to rotation that the bit faces. High torque can tell about hard
formations, bit balling, or ineffective cleaning of holes. The trends of the torque give
information about formation changes, drilling efficiency, and mechanical problems.

3. Hydraulics and Mud Flow Rate

The hydraulic energy is also required to carry the cuttings to the surface, cool the bit and
stabilize the wellbore. Even in case mechanical parameters are optimized, poor hole cleaning
may significantly lower ROP. The important variables are pump rate, density of the mud,
nozzle setting and annular velocity.

4. Bit Type and Cutter Design

Bit choice has an impact on rock fragmentation, durability and the ROP that can be attained.
PDC bits deliver high ROP in homogeneous formation, roller- cone bits deliver better in
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abrasive formations, and hybrid bits are trying to combine the benefits of both. Long term
penetration rates are affected by bit wear, cutter geometry or bearing performance.

B. Traditional ROP Equations

Classical ROP models tried to measure the correlation between drilling parameters and drilling
rate with simple empirical equations or physics equations in a simplified manner.

1. Bourgoyne & Young (B&Y) Model

The B&Y model is an 8-parameter empirical model which incorporates the WOB, RPM, bit
wear, hydraulic effects, formation pressure and drillability. It is flexible and needs sensitive
calibration and assumes log-linear input-ROP associations [8].

2. Bingham Model

The Bingham model is an expression of ROP as a linear relation of WOB and bit diameter. It
is easy to implement, and only works in shallow or homogeneous geologic formations, and
does not consider dynamic changes in the drilling conditions [9].

3. Gates & Taylor (G&T) Model

The model G&T takes into consideration bit wear with time, which predicts the reduction of
ROP in abrasive structures. It is also applicable especially in long drilling periods where bit
wear has a serious impact on the performance.

Table 1: Comparison of Traditional ROP Models

Model Key Inputs Assumptions  Strengths Limitations

Bourgoyne = WOB, RPM, pore Log-linear Comprehensive; Requires heavy

& Young pressure, bit wear, relationships  widely used calibration; limited

(B&Y) hydraulics, generalization

drillability

Bingham WOB, bit Linear Simple, fast Oversimplified;

Model diameter relationship inaccurate for
complex
formations

Gates & Bit wear, Wear- Good for Poor real-time

Taylor formation dependent abrasive capability; limited

(G&T) abrasiveness, time ROP decline formations parameters

C. Limitations of Conventional ROP Models
Despite their historical significance, classical models have several drawbacks [10]:
1. Simplified Mathematical Assumptions

Linear or log-linear assumptions fail to capture the true nonlinear interactions between WOB,
RPM, hydraulics, bit wear, and formation properties.

2. Limited Generalization Across Wells and Formations

Models require well-specific calibration. Their accuracy declines sharply when applied to new
wells, different lithologies, or dynamic drilling conditions.
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3. Inability to Handle Real-Time Dynamics

ROP is influenced by lithological changes, bit wear, hole cleaning efficiency, and mechanical
vibrations. Classical models cannot adapt to such variations in real time.

MECHANICAL HYDRAULIC
FACTORS FACTORS
e Weight on Bit (WOB) e Mud Flow Rate
« Rotary Speed (RPM) e Nozzle Configuration
e Torque e Annular Velocity
: RATE OF L
”l PENETRATION |5
L (ROP) )
BIT-RELATED GEOLOGICAL
FACTORS FACTORS
e Bit Type e Rock Hardness
e Cutter Geometry e Formation Abrasiveness
e Wear e Pore Pressure

Figure 2: Schematic of ROP Influencing Factors

Figure 2 shows the aspects of ROP that are affected: the mechanical parameters, i.e. WOB,
RPM and the torque directly influence bit penetration. Cuttings removal and bit cooling depend
on hydraulic factors such as the rate of mud flow, nozzle design and annular velocity. Cutting
efficiency is dependent on bit related factors, such as bit type, cutter geometry, and wear,
whereas natural limits against penetration are set by geological factors, such as rock hardness,
formation abrasiveness, and pore pressure. All these factors demonstrate how difficult it is to
predict the ROP.

Foundations of Machine Learning in Drilling

The success of machine learning (ML) application to drilling activities represented a radical
change of the traditional mechanistic and empirical paradigm to predictive methods. ML
models were also able to deal with nonlinear, interacting variables, and heterogeneous data to
enhance the quality of ROP forecasting and the overall drilling optimization. Here, the general
categories of the most popular ML algorithms, data preprocessing techniques, and metrics are
presented [11].

A. Overview of ML Algorithms Used

There is a range of ML algorithms that were extensively used in drilling optimization and ROP
prediction. These algorithms were chosen due to the capacity to reveal the nonlinear patterns,
generalization across datasets and real-time prediction or near real-time prediction.

1. Artificial Neural Networks (ANN)

The role of ANNs is based on the human brain structure, which is composed of a series of
layers connected by nodes (neurons) capable of learning complicated nonlinearity. ANNs were
also popularly applied in the prediction of ROP with respect to the inputs, which included
WOB, RPM, torque, bit type, and formation properties. Their capability to predict patterns
based on historical data sets made them especially valuable with heterogeneous formations
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especially when trained on large amounts of data, but generally vulnerable to overfitting unless
overfitting was closely guarded [12].

2. Support Vector Machines (SVM)

The regression or classification of input data in a high-dimensional space and the locating a
good hyperplane between classes or a continuous forecasting outcome is the work of SVMs.
In ROP studies, SVMs were used to make predictions of high/low penetration rate regimes or
classify lithology zones. They can handle smaller datasets with ease, but are likely to be
computationally expensive when working with large, multi-variable datasets.

3. Decision Trees (DT) and Random Forests (RF)

Decision Trees divide the data into branches with hierarchies as a result of the features to arrive
at predictions. RFs are better than DTs because they are able to combine multiple trees to
decrease overfitting and increase predictive stability [13]. These models were extensively
applied to determine the key drilling parameters affecting ROP, as well as to process
heterogeneous data sets that have nonlinear interactions between WOB, RPM, hydraulics and
geological parameters.

4. Gradient Boosting Machines (GBM)

GBMs build on a series of weak learners in order to enhance predictive accuracy. They were
especially handy in modeling continuous ROP data in complicated drilling conditions, and of
the subtle changes in drilling behavior which might be overlooked by simpler models.
Nonetheless, they were prone to noisy data and had to be carefully hyperparameter-tuned.

5. k-Nearest Neighbors (KNN)

KNN forecasts the results according to their proximity to the nearest neighbors in the feature
space. It was applied in ROP regression and classification of small to medium datasets. It was
easy to use and attractive, however, it is sensitive to feature and outlier scaling [14].

6. K-means Clustering

Even though it was not a predictive algorithm, K-means was commonly used to pre-process,
e.g. to cluster lithologies, operating regimes or drilling patterns. Such clusters would then be
used as input features to supervised ML models and enhance accuracy of prediction.
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Algorithm Typical Strengths Limitations Typical
Applications Datasets
ANN ROP prediction, Handles non- Requires large Sensor logs,
drilling parameter linearity, datasets, prone to historical
optimization adaptable overfitting drilling data
SVM ROP trend Works well Computationally Formation logs,
classification with small expensive for large  drilling
datasets datasets parameters
Decision ROP regression,  Easy to Overfitting if not Bit parameters,
Trees categorical interpret pruned WOB, RPM
outputs
Random ROP prediction, Robust, reduces Less interpretable ~ Multi-well
Forest feature overfitting datasets,
importance MWD/LWD
Gradient Continuous ROP  High accuracy, Sensitive to noisy ~ Large
Boosting prediction handles data operational
heterogeneity datasets
KNN ROP regression or Simple, Sensitive to Small sensor
classification intuitive outliers, scale- datasets
dependent
K-means Preprocessing, Simple, Not predictive Lithology or
clustering effective for itself operational
lithologies grouping parameter
clustering

A. Data Requirements and Preprocessing

The quality of input data is very imperative in a successful ML application in drilling.
Preprocessing is needed so that the models do not learn noise.

1. Normalization and Scaling

Normalization or standardization of data was done to prevent bias associated with various units
or scales of input features. The performance of algorithms, such as KNN or SVM, might not
be very good without scaling since the magnitude of distance-related calculations would be
covered by large values.

2. Outlier Detection and Removal.

Outliers due to sensor errors or extreme operations or data logging issues were detected and
eliminated. This measure helped the models to avoid the development of misleading patterns
that decrease the predictive accuracy [15].
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3. Feature Engineering

Raw inputs were commonly processed into new features to increase the sensitivity of the model
to the drilling dynamics, including combined WOB-RPM indices, hydraulic horsepower, bit-
specific penetration ratios, or normalized torque factors. The aspect of feature engineering
played a major role in enhancing the model performance on heterogeneous formations.

4. Data Quality of Sensors and Missing Data.

It was important to make sure that MWD/LWD measurements are accurate and consistent. The
problem of missing data was solved through mean/median imputation, interpolation, or through
forward filling. Such methods enabled the models to be trained successfully without
compromising on large sections of data. Figure 3 shows the typical ML model development
workflow for drilling optimization. The process begins with data collection from sensors and
historical drilling logs, followed by preprocessing (normalization, outlier removal, and feature
engineering). Data is then split into training and testing sets, and models such as ANN, RF, or
SVM are trained and validated. Finally, performance is evaluated using appropriate metrics,
and results guide ROP prediction and operational optimization.

FIGURE 3
ML Model Development Workflow (Pre-2021)

DATA COLLECTION

L]
Sensors, Historical Drilling Logs

PREPROCESSING

[ Normalization ] [ Outlier Removal] [Feature Engineering]

TRAINING AND
TESTING DATA

MODEL
TRAINING AND
VALIDATION

ANN, RF or SVM
4

PERFORMANCE
EVALUATION
|

ROP Prediction,
Operational Optimization

Figure 3: Workflow of ML Model Development
A. Performance Metrics Used in ROP Studies

Assessing the performance of the ML models demanded quantitative measurements in order to
be reliable and accurate [16].
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1. Root Mean Squared Error (RMSE)

RMSE is a measure of the mean squared differences between the predicted and observed ROP,
a fact that predisposes it to any large error. Continuous ROP prediction tasks are generally
reported to use it.

2. Mean Absolute Error (MAE)

MAE is used to analyze average differences between the predicted and measured values in an
intuitive and strong measure of prediction error.

3. Coefficient of Determination (R2)

R2 represents the percentage variation of ROP that can be explained by the model. The lower
the values, the higher the predictive capacity.

4. Metrics of Accuracy and Classification.

The measures to evaluate model performance were accuracy, precision and recall in instances
that ROP was categorized (e.g. high/medium/ low). Comparisons between these measures
between the algorithms enabled the researchers to determine the most appropriate ML method
to use in their datasets.

Despite extensive application of standalone ML techniques for ROP prediction, gaps remain in
handling data scarcity, operational non-stationarity, and physical inconsistency across wells.
These limitations motivate the exploration of hybrid ML models that integrate optimization,
ensemble learning, soft computing, and physics-based constraints.

Hybrid Machine Learning Models for Drilling Optimization

Hybrid machine learning models denote a major change in the optimization of the drilling
process, especially in the forecasting of the Rate of Penetration (ROP). Scholars understood
that isolated ML models or classical mechanistic methods had drawbacks in generalization,
ability to navigate nonlinearities, and capability to capture complicated operation states. These
problems are solved by using Hybrid ML models, which can be used to improve the predictive
accuracy, robustness, and applicability of heterogeneous formations through the combination
of many methods. This section refers to the hybrid ML models, justifies their significance and
outlines the key types applied [17].

A. Definition and Importance of Hybrid ML Models

Hybrid ML models combine two or more predictive methods and exploit their respective strong
points as well as eliminating the weaknesses of each. They may be generalized into four:

1. ML +ML

Multiple machine learning algorithms can be used together to improve the performance of
prediction. Such examples are ANN-GA (Artificial Neural Network -Genetic Algorithm) or
RF-PSO (Random Forest -Particle Swarm Optimization), where a single ML model makes
predictions, and the other optimizes the parameters, improves the feature selection, or removes
overfitting [18].

2. ML + Statistical Models

Part hybrid models include some models that use both data-driven learning with MLs and
traditional statistical models and seek to take advantage of both data-driven learning and
existing known probabilistic relationships. This fusion enables models to be interpretable and
at the same time enjoy the flexibility of ML.
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3. ML + Physics-Based Models

Classical mechanistic ROMs, like Bourgoyne and Young or Gates and Taylor are used with
ML algorithms who make predictions of residuals or corrections. This is to make sure that
predictions do not compromise known physical relationships but they also capture the
unmodeled nonlinearities and formation variability.

4. ML + Fuzzy Logic

Fuzzy-logic based hybrids (as in ANFIS (Adaptive Neuro-Fuzzy Inference System)) or FANN
(Fuzzy + ANN) are neural networks that use the interpretability (uncertainties) and uncertainty-
handling of fuzzy systems, along with its learning power. The models are efficient where the
data is noisy, incomplete or uncertain.

The significance of hybrid ML models can be explained by their capability to enhance the ROP
predictions during complex drilling conditions, decrease non-productive time, and fund the
data-based optimization decision-making of real-time operations.

A. Categories of Hybrid Approaches

Hybrid ML approaches were developed in four major categories based on their integration
strategy and functional objectives.

1. Optimization-Integrated Hybrid Models

Hybrids are machine learning models that are optimized with global optimization tools in order
to optimize the model performance. ANN-PSO (Artificial Neural Network — Particle Swarm
Optimization) and ANN-GA (Artificial Neural Network -Genetic Algorithm) achieve the
optimization of weights and biases of the neural networks to avoid local minimums and
enhance generalization. SVM-PSO (Support Vector Machine -Particle Swarm Optimization)
optimizes hyperparameters like of kernel type, regularization to achieve highest predictive
precision. RF-GA (Random Forest -Genetic Algorithm) uses GA to select the most useful
features and modify tree parameters, which minimises overfitting. These models increase the
accuracy of ROP forecasts of various formations and drilling environments.

2. Ensemble Hybrid Models

Ensemble hybrid models represent a set of ML algorithms that use their joint predictive ability.
Bagging (Bootstrap Aggregating) mitigates variance by training base learners on resampled
datasets as in the case of Random Forests. Sequential training gives more weight to the
instances that a weak learner predicts poorly and boosting the training is a method to train weak
learners, with Gradient Boosting Machines and AdaBoost being common in ROP prediction.
Stacking combines the predictions of many models by employing a meta-learner to generate
better accuracy than the single models. Ensemble methods are especially useful when operating
with heterogeneous data and modeling nonlinear and complex relationships in the drilling
process.

3. Soft Computing Hybrid Models

Machine learning and fuzzy logic is combined in soft computing hybrids to deal with
uncertainty and inaccuracy in drilling data. ANFIS (Adaptive Neuro-Fuzzy Inference System)
is a mixture of the learning ability of ANN and the interpretability of fuzzy rules, which can be
used to make accurate and explainable predictions. Fuzzy logic is employed by FANN (Fuzzy
+ ANN) frameworks to fuzzify the features and ANN to learn the pattern by taking the data.
These models work in a noisy or uncertain operational setting (i.e., changing lithology,
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unreliable sensor measurements or changing drilling conditions) and enhance the accuracy of
ROP prediction in areas where more traditional ML models tend to fail.

4. Hybrid Models with Physics in Mind

Physics informed hybrid models combine classical mechanistic equations of ROP and ML-
based corrections. ML predictions of residuals or deviations are added to baseline predictions
by models such as Bourgoyne & Young or G&T to accommodate nonlinearities or changes in
operations that are not modeled and the non-homogeneity in lithology. This is a more physical
view of prediction that makes the predictions physically significant, but with the adaptability
of ML. The so-called physics-informed hybrids were common knowledge in the field of
research that enhances the efficiency of ROP predictions without the necessity to have
extremely large datasets, which is the one that unites the gap between the data-driven and the
physics-based methods.

ROP Prediction Using Hybrid ML

ROP prediction with hybrid machine learning models showed a high level of improvement
compared to traditional machine learning and mechanistic ones. These models were used on
different types of wells, drilling conditions and working conditions, with improved predictive
capability, flexibility and strength. This part revisits the literature on hybrid ML applications
in vertical and deviated wells, real-time optimization systems, case studies of large oil regions,
and performance comparison with the traditional ML models [19].

A. Hybrid Models Applied in Vertical & Deviated Wells

The first extensive application of hybrid ML models was in vertical wells because the drilling
environment was not that out of control, and thus researchers could validate how the models
performed. ANN-GA and ANN-PSO models were prevalent and parameters of the neural
networks were optimized to represent nonlinear interactions between WOB, RPM, torque, and
formation properties. By systematically tuning the weights, biases and feature selection these
models enhanced predictions of ROP, and surmounted the problems of local minima that
plagued traditional ANN models.

In deviated or directional wells, there is more complexity in operations because of torque
variation, stick-slip and effective WOB change across the well path. The hybrid algorithms RF-
GA and SVM-PSO were used to consider such dynamic effects and the interactions between
mechanical, hydraulic, and geological factors were finally modeled. Investigations indicated
that hybrid models always minimized the errors in prediction in contrast to single ML models,
indicating their versatility in complicated drilling operations. The early applications formed the
basis of more sophisticated predictive systems that were used in the later years, which were
real time.

B. Hybrid Models for Real-Time ROP Optimization

Drilling optimization systems were real-time hybrid ML models that were used to continuously
predict the ROP and aid operational decision-making. The systems were a combination of live
data of MWD/LWD tools and models like ANFIS, FANN, or ANN-GA to give real time advice
on drilling parameters. As an example, in cases where formation hardness or bit wear was not
predictable, the hybrid model had the capability to dynamically adjust WOB, RPM, and mud
flow rates, keeping optimal ROP and minimizing non-productive time (NPT) and bit wear [20].

The experience of these initial applications proved the possibilities of hybrid ML in the real-
time applications. They demonstrated that hybrid models were capable of dealing with sensor
noisy data, sensor missing information or sensor uncertain data giving sound predictions in

https://doi.org/10.47672/ejt.2859 80 Verma et al. (2024)



European Journal of Technology

AIPT
ISSN 2520-0712 (online)

Vol.8, Issue 6, pp 70-88, 2024 wWww.ajpojournals.org

dynamic operational circumstances. The experimental design of optimization-based techniques
within real-time processes also emphasized the possibility of integrating ML and operational
decision support processes to improve the performance of continuous drilling.

C. Case Studies Summary

A number of case studies have demonstrated the efficiency of combined ML models in a
number of geological and working conditions:

1. Middle East Fields

ANN-PSO and ANN-GA methods were tested on the sandstone and carbonate sandstone.
These experiments showed that RMSE errors decreased by 15-25 percent as compared to
ANNS alone, which showed the significance of feature selection and optimization of complex
reservoir scenarios.

2. North Sea

Hybrids RF-GA and SVM-PSO were applied in offshore wells where the trajectories were
deviated and the torque varied. Such models managed to capture the aggregate impact of
mechanical variations, directional drilling, and variability in the formations that were more
precise in predicting the ROP as compared to the standard ML models.

3. US Shale Plays

ANFIS and FANN models were employed to explain extremely heterogeneous lithology,
variable pore pressure and extreme abrasiveness conditions in unconventional shale formation.
Hybrid models were found to be robust in tricky drilling conditions as they were found to retain
prediction accuracy over a number of wells and operational regimes.

4. Offshore Deepwater Wells

ANN corrections were applied to deepwater wells with physics-informed hybrids between
mechanistic ROP models (e.g., Bourgoyne and Young). The models enhanced the
generalization of wells with limited data, and high variability in their operational
characteristics, which proved the benefits of combining physical knowledge and ML forecasts.

A. Performance Comparisons of Hybrid vs Single ML Models

Regularly the studies showed the superior performance of hybrid ML models in contrast to the
solitary ML algorithms. ANN-PSO, ANN-GA, RF-GA and ANFIS posted less values of
RMSE and MAE most especially in the heterogeneous formation and off-track wells [21]. It
was also discovered that hybrid models were more generalized and adjusted to the change in
the formation properties, bit wear, and operational changes, with individual ML models often
being unable to work. Physics-informed hybrids were particularly powerful in scenarios where
the data is sparse, and ROP equations were applied to make physical consistency of predictions
with ML so that the residuals would be corrected. Overall, hybrid models were discovered to
be more precise, stronger, and easier to interpret and are hence a superior means to apply in
ROP prediction research as Table 4 confirms.
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Table 3: Summary Table of Performance Metrics

Study / Hybrid Model Single ML. Performance Improvement

Region Model Metric

Middle East ~ ANN-PSO ANN RMSE, R? RMSE reduced 18%, R?
improved 0.12

North Sea RF-GA RF MAE, RMSE MAE reduced 22%,
RMSE reduced 20%

US Shale ANFIS ANN R2, MAE R? improved 0.15, MAE
reduced 16%

Offshore Physics- ANN RMSE, R? RMSE reduced 20%, R?

Deepwater informed ANN improved 0.14

1. Integration of Hybrid ML Models in Drilling Optimization Workflows

The use of hybrid machine learning models in the drilling optimization processes was a major
move towards data-driven drilling processes. These models were progressively integrated in
the operation of a decision-making process aimed at enhancing ROP, decreasing the non-
productive time (NPT) and enhancing the overall efficiency in the drilling. This part addresses
the importance of real-time data acquisition, the initial work in drilling automation, and the
practical difficulties of the implementation of hybrid ML solutions [22].

A. Role of Real-Time Data Acquisition

Successful application of hybrid ML models in the process of drilling operations requires
reliable and timely data acquisition. Measurement While Drilling (MWD), Logging While
Drilling (LWD), and mud logging data feeds gave important information regarding the
parameters of drilling and the nature of the formations. Downhole parameters that were
measured using MWD systems included inclination, azimuth, downhole torque, and weight on
bit (WOB) and geophysical measurements that were offered by LWD systems included gamma
ray, resistivity, and formation density. Mud logging provided more information on cuttings
composition, gaseous content and properties of drilling fluids.

These real-time data streams also provided hybrid ML models with the opportunity to
dynamically revise predictions in regards to ROP and drilling performance to make proactive
changes to drilling parameters. The importance of strong data acquisition and transmission
infrastructure in applications was demonstrated by the significance of high-quality and high-
frequency datasets to properly train the model and also to perform inference in real-time.

B. Hybrid ML in Drilling Automation

Hybrid ML systems started being incorporated into semi-automated drilling control systems
and early digital oilfield programs. This category of systems employed a hybrid model,
including ANFIS, ANN-GA, physics-informed ML, to give real-time direction on how to
optimize WOB, RPM, and mud flow rates. Although the concept of fully autonomous drilling
was still not achieved, there were attempts to prove semi-automatic optimization of drilling, as
a result of which the role of operators is minimized and drilling accuracy is higher.

ML models that were hybridized were realized in operational processes to discover the best
drilling conditions, adequately predict the potential reduction of the ROP caused by the change
of formations, and give early signals of inefficiencies in operations. This initial integration was
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the foundation of future systems with full automation or closed-loop drilling operations since
it had shown that the ML-driven predictions could be helpful in addition to the human decision-
making process in a complicated and real-time setting.
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Figure 4: Hybrid ML-Based Drilling Optimization System

Figure 4 illustrates a full drilling optimization system based on a hybrid of ML. The process
starts with real-time data collection of MWD, LWD and mud logging systems which is
preprocessed to remove noise and normalize the inputs. Hybrid ML models like optimization-
integrated, ensemble, soft computing, and physics-informed models interfere with the data to
predict ROP and provide parameter changes. Semi-automated drilling control systems process
the output of the models and inform WOB, RPM, and flow of mud. The model predictions are
constantly updated by feedback loops and dynamic optimization during the drilling operation.

A. Operational Challenges and Practical Concerns

Even though they have potential, hybrid ML models are subject to a number of operational
challenges. Unless filtered or preprocessed, sensor noise and measurement errors of downhole
tools may severely decrease model accuracy. The small historical data tended to limit the
extrapolating capability of the model between wells or formations. Any alteration in the
formation properties or tool behavior with time caused model drift that diminished predictive
reliability unless the models were constantly updated.

The problem of overfitting was also typical, especially when ANN hybrids were being trained
on small datasets. Prediction Uncertainty in predictions because of sparse data, lithology
changes, environmental factors needed to be carefully considered as part of the operational
decision-making. To overcome these issues, it was necessary to have powerful preprocessing,
feature engineering, frequent retraining of models and hybrid systems that could take into
account domain knowledge or physical constraints to ensure retention of accuracy and
reliability in real time applications.

Limitations, Challenges, Research Gaps, and Future Directions

Based on the reviewed literature, key research gaps include limited model generalization across
formations, insufficient real-time deployment capability, and lack of interpretability in hybrid
ML-based ROP prediction. These gaps raise critical research questions on how hybrid
frameworks can balance accuracy, physical consistency, and operational trust. Although the
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benefits of the hybrid machine learning models in terms of predicting ROP and optimizing the
drilling process were proven, there were a number of constraints and challenges that limited
their use to the full extent. Availability and quality of downhole data was a significant
limitation. The sensor technology frequently constrained drilling activities, and data gathered
by MWD, LWD, and mud logging devices were affected by noise, low resolutions, or had gaps.
These were the problems that had a direct impact on the accuracy and generalization of hybrid
ML models, in particular, when trying to use trained models in different wells or formations.
This was also complicated by the absence of standardized benchmark datasets and therefore
cross-well or cross-field validation was difficult and it was challenging to compare models
across studies.

Another major factor was the use of computation constraints. Several hybrid ML models like
ANN-GA, ANN-PSO and physics-informed models consumed significant computing power
during training and optimization. These computational requirements frequently made real-time
application impractical in operational conditions, especially when there was a low capacity to
provide downhole processing, e.g. in offshore or remote drilling. Also, the black-box nature of
most of the initial hybrid ML models made them interpretable. The model would frequently
result in operators and engineers not being in a position to fully learn how the decision can be
made, so they do not trust automated or semi-automated recommendations and would not apply
to safety-sensitive operations.

Table 4: Summary of hybrid ML challenges

Challenge Description

Data availability and Limited sensor fidelity, missing values, noisy measurements
quality impacting model accuracy

Lack of benchmark Difficulty in generalizing models across wells and comparing
datasets performance between studies

Computational High training and optimization time, limited real-time
constraints applicability

Interpretability Black-box models reduced operator trust and understanding

In future perspectives, researchers were expected to move towards a number of directions to
overcome these challenges and continue exploring and refining hybrid ML applications in
optimizing drilling [23] . Physics-guided machine learning, or physics-ML fusion, was
anticipated to enhance model generalization with the integration of both mechanistic
knowledge and data-driven learning especially in formations that have inadequate data. They
imagined real-time closed-loop optimization, where semi-automated systems would eventually
be fully automated, with hybrid-driven drilling control, able to continually adjust WOB, RPM
and mud flow according to real time data inputs. It was also forecasted that data-driven
preprocessing would be improved with the enhancement of feature extraction, data fusion
methods, and more reliable sensors that would strengthen the models and lead to better
predictions [24].

Lastly, it was expected to create more interpretable hybrid ML models, and include the notion
of Explainable Al (XAI) to ensure the predictions are understandable and practical to operators.
These requirements highlighted the need to harmonise the three aspects of predictive accuracy,
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practicality, and reliability of hybrid ML-inspired drilling systems in an attempt to provide a
definite direction to research and development during that period.

CONCLUSION AND RECOMMENDATIONS
Conclusion

Hybrid machine learning (ML) models have already been a groundbreaking discovery in
optimization of the drilling process and predicting the Rate of Penetration (ROP). Such models
integrate the power of numerous predictive methods that span neural networks, support vectors
and random forests to fuzzy logic, physics-based mechanistic models to address the inherent
shortcomings of either single-purpose ML or classical empirical methods. The hybrid models
have proven to have a better predictive accuracy, strength, and generalization over
heterogeneous wells and formations by capturing the complex nonlinear relationships between
drilling parameters including weight on bit (WOB), rotary speed (RPM), torque, hydraulics,
bit type, and geological factors.

Hybrid ML had significant improvements in vertical and deviated wells. Hybrids, where
optimization was incorporated like ANN-GA and ANN-PSO, were effective in optimizing the
model parameters helping to avoid local minima and also improving the stability of prediction.
Bagging, boosting and stacking ensemble models took advantage of the synergies among a
combination of algorithms to process noisy and heterogeneous data. Hybrids with soft
computing such as ANFIS and Fuzzy-ANN were useful in dealing with uncertainty and
imprecision of drilling sensor data, whereas physics-informed hybrids mediated mechanistic
knowledge with data-driven learning, ensuring physical consistency in prediction with small
datasets. These models could be integrated in real time with MWD, LWD, and mud logging
data, which enabled semi-automated adjustments to the parameters, which showed the
possibility of positive change in operational efficiency, decrease in non-productive time (NPT),
and supporting decision-making.

Although such successes were achieved, fragmentation remained in the extensive use of hybrid
ML models due to a number of limitations. The availability and quality of data were also a
critical bottleneck as the summery, incomplete, or inconsistent measurements in the downhole
would influence the reliability of the model. The unavailability of standardized benchmark
datasets posed a challenge to cross- well generalization and even cross- well performance
comparisons. The computational requirements of hybrid models, particularly optimization-
based models and ensemble models, restricted their use to real-time or resource-constrained
drilling contexts. Moreover, the black-box of most of the models impaired their interpretation,
thereby curbing the confidence of operators and curtailing functional incorporation in vital
decision-making.

The next direction was to improve hybrid ML methods, through adding physics-guided
machine learning, enhancing real-time closed-loop optimization systems, improving feature
extraction methods and data preprocessing methods, and creating more interpretable and
explainable models. This set of progressions was projected to lead to additional progression of
predictive dependability, a decrease in operational hazards, and an even quicker shift towards
high-intelligent, semi-autonomous, or fully automated drilling operations.

Overall, hybrid ML models have provided a strong basis in the data-driven drilling
optimization, which is a strong tool that can be used to improve the prediction of ROP and
operational efficiency. Hybrid ML frameworks constitute an essential step in the development
of petroleum engineering methods by resolving the nonlinearity, data heterogeneity, and
uncertainty issues, as well as integrating the complementary advantages of various methods,
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which will be a precondition of the future innovations in automated and intelligent drilling
systems.

Recommendations

Future research should focus on developing computationally efficient and explainable hybrid
ML models that can be deployed in real-time drilling environments. Additionally, standardized
benchmark datasets are required to enable fair comparison and cross-field generalization of
ROP prediction models.

The findings of this review provide practical guidance for drilling engineers in selecting hybrid
ML strategies for ROP optimization and support researchers in identifying scalable,
interpretable, and physics-consistent modeling directions for intelligent drilling systems.
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