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Abstract

Purpose: The rechargeable batteries are their
major element where the energy-storage
systems are central to the modern power
networks, electric transportation, and the
portable electronic devices. The possibility to
evaluate the battery condition and estimate
the degradation with time is the key to the
performance, reliability, and safety of these
systems.

Materials and Methods: Two significant
measures of such a purpose are the state of
health (SOH), which is the present capacity
or power capability compared to original
specifications, and the remaining useful life
(RUL), which is an approximation of
operation life until the battery fulfills end-of-
life conditions. SOH and RUL because
predictability is necessary in order to manage
the battery, preventive maintenance, and
cost-efficient ~ system  operation. The
degradation of batteries is dictated by
complex electrochemical and mechanical
mechanisms with dependence on the
conditions of operation like temperature, rate
of charge, depth of discharge and patterns of
usage. These time-varying nonlinearities are
very difficult to deal with through
conventional estimation methods. In order to
overcome these issues, a broad selection of
prognostic techniques has been designed,
which can be narrowed down into model-
based, data-driven, and hybrid. Model-based
approaches are based on physical and

https://doi.org/10.47672/ejt.2852

electrochemical models of battery behavior,
providing interpretability but in most cases,
these models are sensitive to the
identification of accurate parameters.
Machine learning and deep learning models
are data-driven approaches that allow the
establishment of complex degradation trends
at high levels of predictive accuracy using
past operational data. Hybrid frameworks
strive to build the merits of the two paradigms
by blending physical wisdom and data-driven
flexibility.

Findings: When comparing previous
research on the estimation of battery health
and the remaining useful life, it becomes
apparent that the performance trends are
similar in various methodological types.
Although, there is no universal method to be
used in all of the operating conditions, the
literature provides definite advantages and
disadvantages related to model-based, data-
driven, and hybrid prognostic methods.

Unique Contribution to Theory, Practice,
and Policy: The article is a thorough piece of
work that provides an evaluation of battery
health prediction and RUL estimation
approaches both in terms of their principles
of operation, implementation strategies, and
performance attributes.
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INTRODUCTION

Modern energy-storage systems are based on rechargeable batteries, most commonly lithium-
ion (Li-ion) chemistries, which are used in portable electronics, electric vehicles and grid-scale
applications. This is mainly because of their pleasant properties as they have high energy
density, long cycle life, low self-discharge, and comparatively high efficiency compared to the
old technologies like lead-acid and nickel-metal hydride batteries. These have facilitated quick
electrification of transportation and introduction of intermittent renewable energy into power
grids. Although these advantages exist, Li-ion batteries are characterized by a slow reduction
in the performance of the batteries throughout their working life [1]. The prolonged life
processes cause the irreversible reduction of capacity, internal resistance, and power capability,
and the decrease of the useful life. The processes that lead to battery degradation are a sum of
electrochemical, thermal, and mechanical processes, such as solid electrolyte interphase (SEI)
growth, lithium plating, fatigue of electrode materials and decomposition of electrolyte [2].
Consequently, the nonlinearity and uncertainty of the operational behavior of batteries
increases with age so proper prediction of battery condition is thus critical in terms of safe
operation, maximum energy use and minimum costs associated with lifecycle. In other
applications like electric vehicles and grid storage, unanticipated battery failure may lead to
safety risk, system downtime and huge economic losses. Therefore, sound estimation of battery
state of health (SOH) and remaining useful life (RUL) has become a fundamental need of
advanced battery management conditions and energy-storage planning models. The State of
Health (SOH) is a quantitative measure that shows the present position of a battery to its
nominal or original position. It is typically characterized by the available capacity, internal
resistance increase or power ability loss. SOH is normally expressed as a percentage with a
fully healthy battery having a value of 100 and the degradation causes a reduction in the SOH
value. Proper estimation of SOH will give understanding of how performance will be lost and
help in decision making in an energy storage system [3].

The Remaining Useful Life (RUL) is the estimated time or the number of operational cycles
that a battery can operate before it reaches an established end-of-life that has been specified. A
required capacity limit is often set by the end of-life which is often taken as 80% of the rated
capacity after which the battery may not perform or be safe. RUL estimation is essential in the
maintenance scheduling, evaluation of warranty, planned replacements and reduction of risk in
safety-critical applications. The mathematical formulation for it can be defined as: Let a battery
be characterized by a health indicator H(t), which represents a measurable or estimated
degradation metric such as capacity, internal resistance, or state of health (SOH). For most
lithium-ion battery applications, SOH is defined in terms of remaining capacity:
40

Where:

e C(t) is the available capacity at time or cycle t,
e Coisthe rated (initial) capacity of the battery.

The process of battery degradation is not an easy one. On the contrary, it is a combination of a
number of interacting mechanisms that are highly dependent on the manner of battery use and
the environment in which the battery functions. The temperature, charge and discharge rate,
depth of discharge and the environmental conditions are all important factors. To make it
worse, variations in usage patterns and minute differences injected during manufacturing are
also sources of additional uncertainty. All these complicate the process of estimating the state
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of health (SOH) and the useful life (RUL) of a battery with great certainty, particularly in more
realistic scenarios where operating conditions keep varying. In most cases, traditional battery
management systems use simple methods, such as coulomb counting, open-circuit voltage, or
simple rule-based thresholds. These techniques are simple to use and need little computations
but they fail to capture the nonlinear behavior of degradation of the battery and they tend to get
errors as long as the load changes or the temperature changes [4]. With increasing demands of
modern energy-storage systems being more reliable and have a longer service life, more
comprehensive prognostic methods are required to be able to address uncertainty, nonlinearity,
and various data better to provide reliable and accurate predictions of battery health.

Energy storage systems (ESS) play a critical role in modern power grids, electric vehicles, and
renewable energy integration; however, accurately predicting system health and estimating
remaining useful life (RUL) remain challenging due to degradation complexity, operational
variability, and uncertainty in usage conditions. Existing approaches often focus on either
health estimation or RUL prediction in isolation, rely on simplified aging assumptions, or lack
robustness across different operating profiles and battery chemistries. Moreover, there is
limited consolidation of data-driven and physics-informed techniques that can support reliable,
real-world decision-making. This study aims to address these gaps by systematically analyzing
health prediction and RUL estimation methods for energy storage systems, highlighting their
strengths, limitations, and practical applicability. The outcomes of this research primarily
benefit battery manufacturers, energy system operators, electric vehicle developers, and
researchers by enabling improved condition monitoring, predictive maintenance, and lifecycle
management of energy storage assets.

LITERATURE REVIEW
Physics and Degradation Mechanisms

The aging of batteries is caused by a combination of various processes such as solid
electrochemical interface (SEI) and active lithium depletion, microstructure alterations of the
electrode, and electrolyte decomposition. These processes decrease capacity and augment
internal opposition with the course of time. The prognostics models need to understand these
mechanisms. The early development of physics of degradation was done by foundational work
on mathematical models of capacity fade [5].

Model-Based Methods

The prognostic process models provide an estimate of battery health using physical and
electrochemical understanding of the degradation reactions. These techniques are normally
based on mathematical models of battery behavior that are developed based on either
equivalent circle models (ECM), electrochemical models, or state-space equations. Model-
based approaches allow a systematic monitoring of battery degradation and remaining useful
life (RUL) through the connection of measurable quantities (voltage, current, temperature, and
others) to internal states [6].

Some of the most popular techniques in this category are kalman filtering frameworks.
Different versions that include the Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF) [7], and Particle Filter (PF) were widely used to estimate the internal battery states, such
as state of charge (SOC) and state of health (SOH). Whereas EKF is based on local
linearization, UKF and PF are more robust to highly nonlinear battery dynamics, since
uncertainty propagation is done by deterministic sampling or Monte Carlo representations.
These methods have been shown to exhibit high levels of estimation in the dynamic operating
conditions, such as variable loads and changes in temperature.
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Figure 1: Kalman and Bayesian Prognostics for Battery Life

The Bayesian and probabilistic prognostic techniques are further extensions of model-based
estimation, which explicitly characterizes the degradation behavior uncertainty. The prediction
of battery RUL has been developed using grey models, Bayesian filtering methods and central
difference particle filters that model stochastic degradation trends and measurement noise [8].
These techniques can give probabilistic health indications, which are especially useful in risk
conscious decision making in safety-critical systems. Although model-based methods are
interpretable and highly grounded on physical aspects, they have significant weaknesses. These
parameters are identified accurately and their model fidelity matters significantly in their
operation that can be different in the various battery chemistries, aging conditions and in their
usage profiles. Moreover, the models might not be able to capture complex and nonlinear
degradation processes experienced in different real-life working conditions, which has led to
the adoption of data-driven and hybrid models in the recent past.

Data-Driven Techniques

The recent years have seen data-driven prognostic methods gaining substantial popularity
because of the development of machine learning algorithms and the increased availability of
large-scale battery aging data. Data-driven techniques, in contrast to model-based ones, do not
need explicit knowledge of electrochemical processes. They are instead instructed on the
patterns of degradation directly on historic measurements and are therefore especially
appealing to complex battery systems that may work under varied and uncertain environments.

Statistical Models and Regression

Initial applications of data-driven methods were based on regression and statistical modeling
to determine the condition between measurable battery measurements and health outcomes like
state of health (SOH) and remaining useful life (RUL). Informative features that are extracted
using voltage, current, and capacity trajectories have been obtained through the use of linear
and regularized regression methods, and ridge regression and lasso regression [9]. Such
characteristics are usually characterized by features of voltage curves, peak of incremental
capacities and statistical characteristics of charge discharge profiles. These models are
computationally inexpensive and fairly straightforward to interpret, and thus can be used in
embedded or low resource applications. Their low representational ability, however, limits
their capability to model very nonlinear degradation behavior, especially when different load
profiles and environmental conditions are used [10].
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Machine Learning and Neural Network

In order to overcome the shortcomings of the simple regression models, more sophisticated
machine learning methods have been extensively used. Treatment of nonlinear correlations
between measurable battery variables and degradation trends Support vector regression (SVR),
random forests, gradient boosting and ensemble learning methods have been shown to perform
well under degradation prediction. These methods can access more complicated feature
interactions and have better generalization than linear models do. The methods based on neural
networks have also contributed to data-driven battery prognostics, as they allow automatic
features learning [11]. General regression model The SOH or RUL (or any other battery health
indicator) may be modeled as a response to extracted features x (voltage, current, temperature,
capacity measurements, etc.):

g = f(x;0) + e

Where vy is the forecasted SOH or RUL, f is the regression model (linear or nonlinear), & is
model parameters and ¢ is the error residual. Recurrent neural networks (RNNSs), in general,
and Long Short-Term Memory (LSTM) models, in particular, are particularly suitable to
battery degradation modeling since they allow modeling temporal dependencies in charge
cycles and discharge cycles. The LSTM-based models have demonstrated strong performance
in predicting SOH and RUL through learning of long-term trend of degradation using
sequential data despite the presence of noise and variability in the operation. Recently,
Convolutional Neural Networks (CNNs) with recurrent layers as hybrid deep learning
architectures have also been studied. CNNs improve the extraction of features through the
detection of local patterns and correlations of battery signals whereas RNNs learn their
dynamics. These hybrid models have been found to have better predictive performance and
strong performance, especially in long-horizon RUL estimation in complex operating
conditions. Although they are highly performing, data-driven approaches demand large
volumes of high-quality data and can be associated with low interpretability [12].
Consequently, recent studies give more attention to hybrid and physics-informed learning
models to integrate the flexibility of data-driven models and the understandability of physical
knowledge.

Hybrid and Fusion Models

The vision of hybrid prognostic methods is to have the benefit of both worlds: clear physical
insight into processes provided by physics-based models and the ability of data-driven methods
to be flexible and learn. These hybrid models can be implemented by combining methods, like
particle filters and neural networks, or a combination of several methods of modeling to deliver
more precise and credible forecasts. They in particular are useful in managing issues such as
sensor noise, changes in operating conditions, and other uncertainties that tend to negatively
affect the behavior of purely physics-based or purely data-driven models.

Despite significant progress in health prediction and remaining useful life estimation for energy
storage systems, several research gaps persist. Many existing studies evaluate prediction
models using limited datasets or controlled experimental conditions, raising concerns regarding
generalizability under real-world operating environments. Additionally, the impact of
operating factors such as temperature variations, charge-discharge patterns, and aging
heterogeneity on model robustness is not consistently addressed. There is also a lack of unified
frameworks that effectively integrate data-driven, machine learning, and physics-based
approaches for long-term health prognosis. These gaps give rise to key research questions,
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including: How can health and RUL prediction models be made robust across varying
operational conditions? What combinations of modeling techniques best balance prediction
accuracy, interpretability, and computational efficiency? And how can uncertainty in
degradation behavior be systematically incorporated into ESS prognostics? Addressing these
questions is essential for advancing reliable and scalable ESS health management solutions.

MATERIALS AND METHODS

Battery Remaining Useful Life (RUL) and State of Health (SOH) prediction demands a
systematic architecture that involves data collection, feature mining, model development and
forecasting. An effective methodology will ensure that the models are able to reflect the
underlying degradation dynamics and variability in operating conditions, and give credible
predictions that can be used in practice.

Data Collection

The quality of predicting battery health starts with strong and quality datasets. The battery
datasets can be acquired in the controlled laboratory experiments using the method of repeated
charge discharge cycles of individual cells (or battery packs) with specified environmental and
load conditions. These controlled tests make it possible to monitor voltage, current,
temperature, and capacity changes over time with an exact amount of accuracy to serve as a
ground truth to estimating the SOH and RUL.

Most of the studies also use publicly available datasets in addition to the experimental data,
which can be used to benchmark and validate the models. The most notable ones are NASA
Prognostics Data Repository which offers Li-ion battery cycling data with environmental and
operational data, and the CALCE battery dataset, which offers longitudinal degradation data of
various chemistries and applications. Such datasets in general cover high-resolution data of
electrical parameters and thermal conditions which are crucial in detecting minute trends of
degradation leading to performance loss. Another benefit of using such datasets is that they
enable researchers to test the model generalization to other battery chemistries and operating
profiles, which is one of the key challenges of practical battery prognostics.

Feature Engineering

Once data is collected, the next step is feature extraction, which transforms raw measurements
into meaningful indicators of battery health. Features can be broadly categorized into time-
domain, frequency-domain, and statistical metrics, all of which provide complementary
insights into the degradation process.

e Time-domain features contain methods like incremental capacity analysis (ICA) and
differential voltage analysis (DVA), that measure changes in the charge/discharge
curves that are highly related to capacity fade. Such approaches are able to observe
small changes in plateaus or heights in voltage prior to any observable serious
degeneration in the crude measurements.

e Statistical features are the calculation of the mean, standard deviation, skewness, and
kurtosis of voltage, current and temperature signals. These indicators are useful to
capture variability, noise and trends which can be attributed to battery aging. As an
example, the terminal voltage discharge is getting larger and larger, and this might be
indicative of increasing internal resistance.

e In itself, physics-informed features are more and more popular in hybrid modeling, in
which the measurable quantities are converted depending on the known electrochemical
processes. These can be normalized capacity loss, resistance growth trends or cycle
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energy efficiency. These characteristics make the models more interpretable and enable
them to take into account basic insights of battery chemistry.

The feature engineering is important, since it directly determines the predictive accuracy of
data-driven models [13]. The features are carefully filtered and preprocessed into the features
like noise cancelling, missing data, and normalization to assure that the models can learn
meaningful patterns and not spurious correlations.

Model Training

With features extracted, the next step is to train predictive models that map these features to
SOH and, subsequently, forecast RUL. Models can be data-driven, physics-based, or hybrid,
each with distinct advantages:

e Data-driven models apply machine learning models like support vector regression
(SVR), random forests and gradient boosting, or deep learning models like Long Short-
Term Memory (LSTM) networks, which are well-suited to modeling temporal
relationships in sequence data.

e Physics-based models use equivalent circuit models (ECMs) or electrochemical state-
space models to have a predictive model of internal states, which are interpretable and
allow prediction to be based on physical laws.

e The hybrid models are a combination of both and include examples such as physics-
informed features as an input to deep learning models.

Training is done with caution when it comes to the hyperparameter tuning, cross-validation
and testing on different validation sets to prevent overfitting. Practically, k-fold cross-
validation or rolling-window validation is usually used to make sure that the model can be well
generalized to various operational conditions. Root Mean Squared error (RMSE) and Mean
Absolute error (MAE) and correlation to observed degradation trajectories are usually used to
measure model performance. This is aimed at developing a model that is able to not only predict
SOH at a particular time but also the trend of degradation, which is fundamental to effective
RUL prediction.

RUL Estimation

After training, the model is used to predict the Remaining Useful Life. RUL estimation can be
performed using several approaches:

e Multi-step forecasting: Models like LSTMs are sequence based and they are used to
predict future values of SOH across a series of cycles. RUL can be estimated by making
extrapolations of these predictions until a pre-determined end-of-life limit is attained
[14].

e Probabilistic forecasting: Bayesian models, Gaussian Process Regression (GPR), or
particle filters have the ability to not only produce point estimates, but also uncertainty
bands. This plays a critical role to make decisions with risk awareness in applications
such as electric vehicles or in energy storage on a grid scale.

e Health-state classification and transition modeling: There are frameworks in which
battery health is discrete (e.g., is in state H1, H2, or H3) and the transition probability
is used to predict how long it will take the battery to reach a critical state. This method
is especially applicable in cases where the nonlinearity induced by operational
variability or in cases where precision SOH estimation is difficult.
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Finally, the method selected is based on the need of the application, the data available and
acceptable trade-off between precision, computing complexity and readability. An effective
methodology can be used to guarantee reliability and actionability of RUL predictions in order
to provide effective maintenance planning, replacement planning, and risk reduction in
practical energy-storage systems.
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FINDINGS

When comparing previous research on the estimation of battery health and the remaining useful
life, it becomes apparent that the performance trends are similar in various methodological
types. Although, there is no universal method to be used in all of the operating conditions, the
literature provides definite advantages and disadvantages related to model-based, data-driven,
and hybrid prognostic methods. These observations have been summarized and discussed as
follows in the subsections that follow.

Model-Based Prognostics

Prognostic approaches that use electrochemical models or equivalent circuit models are
appreciated to have a high degree of physical interpretability and stability. Explicitly modeling
degradation processes including solid electrolyte interphase growth, lithium plating or internal
resistance increase, these methods give some understanding on the underlying aging processes
of batteries. This openness makes them especially appealing to safety critical applications, in
which it is as crucial to know what causes degradation as it is to know how it will evolve.
Nonetheless, literature findings show that model-based methods tend to be inaccurate when
operating in real-world conditions [15]. Temperature variability, load dynamics, charging
dynamics and manufacturing irregularities have nonlinearities that are hard to represent with
constant model parameters. Moreover, the proper calibration of such models often involves a
close understanding of the chemistry of battery and large amounts of experimental data, which
is not always available. Subsequently, although model-based approaches are particularly
accurate in the short term and stable behavior, their long-term predictions of RUL can be
spoiled by operational uncertainty and sensor noise.
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Data-Driven Models

Machine learning and deep learning methods have demonstrated good predictive accuracy on
a vast selection of benchmark datasets, and are data-driven. Support vector machines, random
forests, and neural networks are models of degradation that are directly trained using historical
data directly, without directly assuming any model of electrochemical behavior. Recurrent
neural networks in particular long short-term memory (LSTM) networks are one of these that
have been extensively documented to deliver low forecast errors in SOH estimation, as well as
in long-horizon RUL forecasting [16].

Empirical findings of various studies show that the LSTM-based models are efficient in the
ability to extract the temporal dependencies and nonlinear trends of degradation of battery
aging data. These models are particularly effective in cases where high quality and large
datasets are also present and operating conditions are within the range of conditions during
training. However, there is no limitation of data-driven models. They may perform poorly on
invisible operating regimes and their inability to be physically interpreted is an issue of concern
in terms of trust and explainability especially in safety-critical energy storage systems.

Hybrid Approaches

Hybrid prognostic models, where physics-based models are combined with data-driven
learning, are always found to be more robust and adaptive than nonspecialized ones in
comparative studies. The interpretability and constraint analysis of physical models, as well as
the flexibility of machine learning methods, can be combined to make hybrid methods better
suited to deal with noisy measurements and variable operating conditions. An example would
be the use of physics-informed features during neural network training, or the use of data-
driven corrections to account for errors in modeling in conventional degradation models.
According to the reported results, hybrid methods tend to deliver better results than purely
model-based or purely data-driven methods, especially in those cases where only partial data
information is available, sensor uncertainty arises, or the usage pattern is highly dynamical.
Even though these approaches bring with them a certain level of added complexity and
computation costs, the tradeoff between accuracy, robustness, and interpretability they achieve
is highly appropriate in the context of real-world battery management. In turn, hybrid
prognostics are also becoming considered as a viable way to compromise in an attempt to
achieve reliable SOH and RUL prediction in contemporary energy-storage systems.
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Aspect

Model-Based
Prognostics

Data-Driven
Models

Hybrid Approaches

Core principle

Interpretability

Prediction
accuracy

Robustness to
Noise &
Variability

Data requirement

Computational
complexity

Generalization
ability

Suitability for
Real-World
Applications

Typical use cases

Relies on physics-based

or electrochemical
models to represent
battery degradation
mechanisms

High; model parameters
and outputs have clear

physical meaning

Reliable for short-term
prediction under known

conditions

Limited; sensitive to
parameter uncertainty
and modeling
assumptions

Low to moderate;
requires domain
knowledge and
calibration data

Low to moderate

Limited across different

battery types or usage
profiles
Suitable for safety

analysis and controlled

environments

Early-stage design, fault

diagnosis, safety
assessment

Learns degradation
patterns directly
from historical data
using machine
learning algorithms
Low to moderate;
often treated as
black-box models

High accuracy,
especially for long-
term RUL
forecasting
Sensitive to unseen
operating conditions
and data quality

High; performance
improves with large,
diverse datasets

High, especially for
deep learning
models

Often poor without
retraining

Suitable for data-
rich systems with
stable operating
regimes
Long-term RUL
forecasting,
condition
monitoring

Integrates physical
models with data-
driven learning to
leverage strengths of
both

Moderate to high;
physical constraints
improve
interpretability
Generally high and
more stable across
varying conditions

Strong; better
handling of noisy and
non-stationary data

Moderate; benefits
from both historical
data and physical
insight

Moderate to high due
to model integration

Improved
generalization due to
physical constraints
Highly suitable for
practical battery
management systems

Online health
monitoring, adaptive
battery management

Discussion

The comparative review of battery health prediction systems indicates a substantial
advancement and a current shortcoming of SOH estimation and RUL forecasting. Although
sophisticated modeling methods have enhanced the accuracy and strength of prediction, there
are still a number of technical and practical problems that render their extensive application
not feasible to real-life energy-storage systems. This section talks about such challenges, the
practical implications of better prognostic capabilities and where future research might go
without the need to go further.
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Challenges

Nevertheless, battery prognostics is a complicated and developing field of research even when
significant progress is achieved in the field of modeling and data analytics. The limitation of
measurement is a basic issue. There are many critical internal battery conditions including
lithium inventory loss, electrode degradation or internal resistance increase, which cannot be
directly measured during normal operation [17]. They instead have to be observed using
external cues like voltage, current and temperature which are normally noisy and are affected
by environmental and operational variability. Incorrect sensor measurements, sampling
constraints and communication delays also make it hard to estimate SOH in real-time especially
in large or distributed energy-storage systems. Lack of data and variation is also one of the
significant limitations. Good quality degradation data with long operational life, different
application pattern, and different environmental conditions are scarce. The majority of publicly
available data sets are gathered in the controlled laboratory conditions and might not reflect the
real life behavior completely. Such inability to have a variety of data may result in biased
models that may work well on benchmark data but fail when used in real-life situations.
Another problem that persists is model generalization. Models that have been trained on a given
battery chemistry, form factor or usage profile are frequently unable to extrapolate to other
systems. The differences in manufacturing, operating conditions and user operation bring along
divergences which are hard to encompass in one predictive model. This is a specific challenge
to approaches based on data, where it depends strongly on the statistical characteristics of
training data, and can tend to become invalid as conditions not seen during training are
encountered.

CONCLUSION AND RECOMMENDATIONS
Conclusion

The problem of a complex and interdisciplinary nature proposes to predict the health and useful
life of a battery necessitating a combination of the understanding of electrochemical principles,
statistical modeling with machine learning methods. Advances in data-driven approaches
especially deep neural networks with the ability to model nonlinear and temporal patterns of
degradation have achieved significant gains in the accuracy of prognostic across a spectrum of
benchmark studies. Simultaneously, physics-based models remain significant with respect to
being interpretable and offering physically meaningful restrictions to facilitate safe and reliable
operation.

Frameworks that involve a combination of both physical intuition and data-guided flexibility
are known as hybrid prognostic frameworks, and they have developed into one of the most
promising paths. These methods bring out a trade-off between accuracy, robustness, and
explainability and are therefore suitable to be applied in practice within battery management
systems under varying and uncertain conditions. Nonetheless, issues of data availability,
generalization of models and real-time implementation remain.

Further attempts of standardized datasets and real world validation and adaptive online
prognostic methods are likely to increase the reliability and utility of SOH and RUL estimation.
With energy-storage systems becoming an even larger part of transportation and power
infrastructure, effective battery health predictive analytics will be essential in enhancing safety,
improving asset durability, and finding sustainable energy solutions.

Recommendations
Irrespective of these obstacles, the correct SOH and RUL estimation has significant practical
value in various areas of use. In electric cars, predictive maintenance, limited failures, and
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informed reuse of battery or second-life choices can be made because of reliable predictions of
RUL. Enhanced safety is also enabled with the aid of better health estimation as defective
degradation patterns are identified early. In the energy storage systems of the grid scale,
prognostics is crucial in scheduling, load balancing and managing the assets efficiently. By
predicting trends in degradation, the operators are able to readjust the operations strategy in
order to increase battery life, minimize the replacement costs, and enhance the overall
reliability of the system [18]. More accurate health predictions, in turn, can be used to improve
the value of warranty policies and lifecycle costs of manufacturers and operators, which will
enhance the economic justification of energy-storage technologies.

Future Directions

Future studies need to be dedicated towards establishing more general and adaptive prognostic
models. Techniques of transfer learning and domain adaptation provide promising
opportunities to use the experience of one battery system in another and minimise data needs
and enhance the resistance of models to cross-chemistry and cross-application. It is also
necessary to continue working on hybrid models. The incorporation of physical restrictions and
electrochemical knowledge into data-driven models can enhance interpretability, stability, and
the lack of dependence on big data. These models are more appropriate to manage noisy
measurements and variability of operation used in the real-life application. Lastly, more focus
is to be put on online and adaptive prognostics as models are updated with the latest data.
Uncertainty-conscious prediction schemes and real-time learning systems will be essential in
the implementation in battery management systems, where constant health awareness and
decision-making at various points in the battery life cycle are required.
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