
 

  

Health Prediction and Remaining Useful Life Estimation for Energy-

Storage Systems 

 

Krishna Gandhi, Pankaj Verma 



European Journal of Technology  

ISSN 2520-0712 (online)   

Vol.10, Issue 1, pp 14-27, 2026                                                                  www.ajpojournals.org 

https://doi.org/10.47672/ejt.2852                     14                                    Gandhi et al. (2026) 

 

Health Prediction and Remaining Useful Life Estimation for Energy-

Storage Systems 

 

Krishna Gandhi1*, Pankaj Verma2 
1Illinois State University, 100 N University St, Normal, IL 61761, United States 

2Indian Institute of Management, Bangalore (IIM-Bangalore), Bannerghatta Road, Bengaluru, 

Karnataka , India 

 
Article history 

Submitted 04.12.2026 Revised Version Received 02.01.2026 Accepted 05.02.2026 

 

Abstract 

Purpose: The rechargeable batteries are their 

major element where the energy-storage 

systems are central to the modern power 

networks, electric transportation, and the 

portable electronic devices. The possibility to 

evaluate the battery condition and estimate 

the degradation with time is the key to the 

performance, reliability, and safety of these 

systems. 

Materials and Methods: Two significant 

measures of such a purpose are the state of 

health (SOH), which is the present capacity 

or power capability compared to original 

specifications, and the remaining useful life 

(RUL), which is an approximation of 

operation life until the battery fulfills end-of-

life conditions. SOH and RUL because 

predictability is necessary in order to manage 

the battery, preventive maintenance, and 

cost-efficient system operation. The 

degradation of batteries is dictated by 

complex electrochemical and mechanical 

mechanisms with dependence on the 

conditions of operation like temperature, rate 

of charge, depth of discharge and patterns of 

usage. These time-varying nonlinearities are 

very difficult to deal with through 

conventional estimation methods. In order to 

overcome these issues, a broad selection of 

prognostic techniques has been designed, 

which can be narrowed down into model-

based, data-driven, and hybrid. Model-based 

approaches are based on physical and 

electrochemical models of battery behavior, 

providing interpretability but in most cases, 

these models are sensitive to the 

identification of accurate parameters. 

Machine learning and deep learning models 

are data-driven approaches that allow the 

establishment of complex degradation trends 

at high levels of predictive accuracy using 

past operational data. Hybrid frameworks 

strive to build the merits of the two paradigms 

by blending physical wisdom and data-driven 

flexibility. 

Findings: When comparing previous 

research on the estimation of battery health 

and the remaining useful life, it becomes 

apparent that the performance trends are 

similar in various methodological types. 

Although, there is no universal method to be 

used in all of the operating conditions, the 

literature provides definite advantages and 

disadvantages related to model-based, data-

driven, and hybrid prognostic methods. 

Unique Contribution to Theory, Practice, 

and Policy: The article is a thorough piece of 

work that provides an evaluation of battery 

health prediction and RUL estimation 

approaches both in terms of their principles 

of operation, implementation strategies, and 

performance attributes. 
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INTRODUCTION 

Modern energy-storage systems are based on rechargeable batteries, most commonly lithium-

ion (Li-ion) chemistries, which are used in portable electronics, electric vehicles and grid-scale 

applications. This is mainly because of their pleasant properties as they have high energy 

density, long cycle life, low self-discharge, and comparatively high efficiency compared to the 

old technologies like lead-acid and nickel-metal hydride batteries. These have facilitated quick 

electrification of transportation and introduction of intermittent renewable energy into power 

grids. Although these advantages exist, Li-ion batteries are characterized by a slow reduction 

in the performance of the batteries throughout their working life [1]. The prolonged life 

processes cause the irreversible reduction of capacity, internal resistance, and power capability, 

and the decrease of the useful life. The processes that lead to battery degradation are a sum of 

electrochemical, thermal, and mechanical processes, such as solid electrolyte interphase (SEI) 

growth, lithium plating, fatigue of electrode materials and decomposition of electrolyte [2]. 

Consequently, the nonlinearity and uncertainty of the operational behavior of batteries 

increases with age so proper prediction of battery condition is thus critical in terms of safe 

operation, maximum energy use and minimum costs associated with lifecycle. In other 

applications like electric vehicles and grid storage, unanticipated battery failure may lead to 

safety risk, system downtime and huge economic losses. Therefore, sound estimation of battery 

state of health (SOH) and remaining useful life (RUL) has become a fundamental need of 

advanced battery management conditions and energy-storage planning models. The State of 

Health (SOH) is a quantitative measure that shows the present position of a battery to its 

nominal or original position. It is typically characterized by the available capacity, internal 

resistance increase or power ability loss. SOH is normally expressed as a percentage with a 

fully healthy battery having a value of 100 and the degradation causes a reduction in the SOH 

value. Proper estimation of SOH will give understanding of how performance will be lost and 

help in decision making in an energy storage system [3]. 

The Remaining Useful Life (RUL) is the estimated time or the number of operational cycles 

that a battery can operate before it reaches an established end-of-life that has been specified. A 

required capacity limit is often set by the end of-life which is often taken as 80% of the rated 

capacity after which the battery may not perform or be safe. RUL estimation is essential in the 

maintenance scheduling, evaluation of warranty, planned replacements and reduction of risk in 

safety-critical applications. The mathematical formulation for it can be defined as: Let a battery 

be characterized by a health indicator H(t), which represents a measurable or estimated 

degradation metric such as capacity, internal resistance, or state of health (SOH). For most 

lithium-ion battery applications, SOH is defined in terms of remaining capacity: 

                                                       𝑆𝑂𝐻(𝑡) =  
𝐶(𝑡)

𝐶0
… … … … … … … … … … … … … … … … (1) 

Where: 

 C(t) is the available capacity at time or cycle t, 

 C0 is the rated (initial) capacity of the battery. 

The process of battery degradation is not an easy one. On the contrary, it is a combination of a 

number of interacting mechanisms that are highly dependent on the manner of battery use and 

the environment in which the battery functions. The temperature, charge and discharge rate, 

depth of discharge and the environmental conditions are all important factors. To make it 

worse, variations in usage patterns and minute differences injected during manufacturing are 

also sources of additional uncertainty. All these complicate the process of estimating the state 
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of health (SOH) and the useful life (RUL) of a battery with great certainty, particularly in more 

realistic scenarios where operating conditions keep varying. In most cases, traditional battery 

management systems use simple methods, such as coulomb counting, open-circuit voltage, or 

simple rule-based thresholds. These techniques are simple to use and need little computations 

but they fail to capture the nonlinear behavior of degradation of the battery and they tend to get 

errors as long as the load changes or the temperature changes [4]. With increasing demands of 

modern energy-storage systems being more reliable and have a longer service life, more 

comprehensive prognostic methods are required to be able to address uncertainty, nonlinearity, 

and various data better to provide reliable and accurate predictions of battery health.  

Energy storage systems (ESS) play a critical role in modern power grids, electric vehicles, and 

renewable energy integration; however, accurately predicting system health and estimating 

remaining useful life (RUL) remain challenging due to degradation complexity, operational 

variability, and uncertainty in usage conditions. Existing approaches often focus on either 

health estimation or RUL prediction in isolation, rely on simplified aging assumptions, or lack 

robustness across different operating profiles and battery chemistries. Moreover, there is 

limited consolidation of data-driven and physics-informed techniques that can support reliable, 

real-world decision-making. This study aims to address these gaps by systematically analyzing 

health prediction and RUL estimation methods for energy storage systems, highlighting their 

strengths, limitations, and practical applicability. The outcomes of this research primarily 

benefit battery manufacturers, energy system operators, electric vehicle developers, and 

researchers by enabling improved condition monitoring, predictive maintenance, and lifecycle 

management of energy storage assets. 

LITERATURE REVIEW 

Physics and Degradation Mechanisms 

The aging of batteries is caused by a combination of various processes such as solid 

electrochemical interface (SEI) and active lithium depletion, microstructure alterations of the 

electrode, and electrolyte decomposition. These processes decrease capacity and augment 

internal opposition with the course of time. The prognostics models need to understand these 

mechanisms. The early development of physics of degradation was done by foundational work 

on mathematical models of capacity fade [5]. 

Model-Based Methods 

The prognostic process models provide an estimate of battery health using physical and 

electrochemical understanding of the degradation reactions. These techniques are normally 

based on mathematical models of battery behavior that are developed based on either 

equivalent circle models (ECM), electrochemical models, or state-space equations. Model-

based approaches allow a systematic monitoring of battery degradation and remaining useful 

life (RUL) through the connection of measurable quantities (voltage, current, temperature, and 

others) to internal states [6]. 

Some of the most popular techniques in this category are kalman filtering frameworks. 

Different versions that include the Extended Kalman Filter (EKF), Unscented Kalman Filter 

(UKF) [7], and Particle Filter (PF) were widely used to estimate the internal battery states, such 

as state of charge (SOC) and state of health (SOH). Whereas EKF is based on local 

linearization, UKF and PF are more robust to highly nonlinear battery dynamics, since 

uncertainty propagation is done by deterministic sampling or Monte Carlo representations. 

These methods have been shown to exhibit high levels of estimation in the dynamic operating 

conditions, such as variable loads and changes in temperature. 
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Figure 1: Kalman and Bayesian Prognostics for Battery Life 

The Bayesian and probabilistic prognostic techniques are further extensions of model-based 

estimation, which explicitly characterizes the degradation behavior uncertainty. The prediction 

of battery RUL has been developed using grey models, Bayesian filtering methods and central 

difference particle filters that model stochastic degradation trends and measurement noise [8]. 

These techniques can give probabilistic health indications, which are especially useful in risk 

conscious decision making in safety-critical systems. Although model-based methods are 

interpretable and highly grounded on physical aspects, they have significant weaknesses. These 

parameters are identified accurately and their model fidelity matters significantly in their 

operation that can be different in the various battery chemistries, aging conditions and in their 

usage profiles. Moreover, the models might not be able to capture complex and nonlinear 

degradation processes experienced in different real-life working conditions, which has led to 

the adoption of data-driven and hybrid models in the recent past. 

Data-Driven Techniques 

The recent years have seen data-driven prognostic methods gaining substantial popularity 

because of the development of machine learning algorithms and the increased availability of 

large-scale battery aging data. Data-driven techniques, in contrast to model-based ones, do not 

need explicit knowledge of electrochemical processes. They are instead instructed on the 

patterns of degradation directly on historic measurements and are therefore especially 

appealing to complex battery systems that may work under varied and uncertain environments. 

Statistical Models and Regression 

Initial applications of data-driven methods were based on regression and statistical modeling 

to determine the condition between measurable battery measurements and health outcomes like 

state of health (SOH) and remaining useful life (RUL). Informative features that are extracted 

using voltage, current, and capacity trajectories have been obtained through the use of linear 

and regularized regression methods, and ridge regression and lasso regression [9]. Such 

characteristics are usually characterized by features of voltage curves, peak of incremental 

capacities and statistical characteristics of charge discharge profiles. These models are 

computationally inexpensive and fairly straightforward to interpret, and thus can be used in 

embedded or low resource applications. Their low representational ability, however, limits 

their capability to model very nonlinear degradation behavior, especially when different load 

profiles and environmental conditions are used [10]. 
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Machine Learning and Neural Network 

In order to overcome the shortcomings of the simple regression models, more sophisticated 

machine learning methods have been extensively used. Treatment of nonlinear correlations 

between measurable battery variables and degradation trends Support vector regression (SVR), 

random forests, gradient boosting and ensemble learning methods have been shown to perform 

well under degradation prediction. These methods can access more complicated feature 

interactions and have better generalization than linear models do. The methods based on neural 

networks have also contributed to data-driven battery prognostics, as they allow automatic 

features learning [11]. General regression model The SOH or RUL (or any other battery health 

indicator) may be modeled as a response to extracted features x (voltage, current, temperature, 

capacity measurements, etc.):   

               ………………………………………………………….(2) 

Where y is the forecasted SOH or RUL, f is the regression model (linear or nonlinear), θ is 

model parameters and ε is the error residual. Recurrent neural networks (RNNs), in general, 

and Long Short-Term Memory (LSTM) models, in particular, are particularly suitable to 

battery degradation modeling since they allow modeling temporal dependencies in charge 

cycles and discharge cycles. The LSTM-based models have demonstrated strong performance 

in predicting SOH and RUL through learning of long-term trend of degradation using 

sequential data despite the presence of noise and variability in the operation. Recently, 

Convolutional Neural Networks (CNNs) with recurrent layers as hybrid deep learning 

architectures have also been studied. CNNs improve the extraction of features through the 

detection of local patterns and correlations of battery signals whereas RNNs learn their 

dynamics. These hybrid models have been found to have better predictive performance and 

strong performance, especially in long-horizon RUL estimation in complex operating 

conditions. Although they are highly performing, data-driven approaches demand large 

volumes of high-quality data and can be associated with low interpretability [12]. 

Consequently, recent studies give more attention to hybrid and physics-informed learning 

models to integrate the flexibility of data-driven models and the understandability of physical 

knowledge.  

Hybrid and Fusion Models 

The vision of hybrid prognostic methods is to have the benefit of both worlds: clear physical 

insight into processes provided by physics-based models and the ability of data-driven methods 

to be flexible and learn. These hybrid models can be implemented by combining methods, like 

particle filters and neural networks, or a combination of several methods of modeling to deliver 

more precise and credible forecasts. They in particular are useful in managing issues such as 

sensor noise, changes in operating conditions, and other uncertainties that tend to negatively 

affect the behavior of purely physics-based or purely data-driven models. 

Despite significant progress in health prediction and remaining useful life estimation for energy 

storage systems, several research gaps persist. Many existing studies evaluate prediction 

models using limited datasets or controlled experimental conditions, raising concerns regarding 

generalizability under real-world operating environments. Additionally, the impact of 

operating factors such as temperature variations, charge-discharge patterns, and aging 

heterogeneity on model robustness is not consistently addressed. There is also a lack of unified 

frameworks that effectively integrate data-driven, machine learning, and physics-based 

approaches for long-term health prognosis. These gaps give rise to key research questions, 
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including: How can health and RUL prediction models be made robust across varying 

operational conditions? What combinations of modeling techniques best balance prediction 

accuracy, interpretability, and computational efficiency? And how can uncertainty in 

degradation behavior be systematically incorporated into ESS prognostics? Addressing these 

questions is essential for advancing reliable and scalable ESS health management solutions. 

MATERIALS AND METHODS 

Battery Remaining Useful Life (RUL) and State of Health (SOH) prediction demands a 

systematic architecture that involves data collection, feature mining, model development and 

forecasting. An effective methodology will ensure that the models are able to reflect the 

underlying degradation dynamics and variability in operating conditions, and give credible 

predictions that can be used in practice. 

Data Collection 

The quality of predicting battery health starts with strong and quality datasets. The battery 

datasets can be acquired in the controlled laboratory experiments using the method of repeated 

charge discharge cycles of individual cells (or battery packs) with specified environmental and 

load conditions. These controlled tests make it possible to monitor voltage, current, 

temperature, and capacity changes over time with an exact amount of accuracy to serve as a 

ground truth to estimating the SOH and RUL. 

Most of the studies also use publicly available datasets in addition to the experimental data, 

which can be used to benchmark and validate the models. The most notable ones are NASA 

Prognostics Data Repository which offers Li-ion battery cycling data with environmental and 

operational data, and the CALCE battery dataset, which offers longitudinal degradation data of 

various chemistries and applications. Such datasets in general cover high-resolution data of 

electrical parameters and thermal conditions which are crucial in detecting minute trends of 

degradation leading to performance loss. Another benefit of using such datasets is that they 

enable researchers to test the model generalization to other battery chemistries and operating 

profiles, which is one of the key challenges of practical battery prognostics. 

Feature Engineering 

Once data is collected, the next step is feature extraction, which transforms raw measurements 

into meaningful indicators of battery health. Features can be broadly categorized into time-

domain, frequency-domain, and statistical metrics, all of which provide complementary 

insights into the degradation process. 

 Time-domain features contain methods like incremental capacity analysis (ICA) and 
differential voltage analysis (DVA), that measure changes in the charge/discharge 

curves that are highly related to capacity fade. Such approaches are able to observe 

small changes in plateaus or heights in voltage prior to any observable serious 

degeneration in the crude measurements. 

 Statistical features are the calculation of the mean, standard deviation, skewness, and 
kurtosis of voltage, current and temperature signals. These indicators are useful to 

capture variability, noise and trends which can be attributed to battery aging. As an 

example, the terminal voltage discharge is getting larger and larger, and this might be 

indicative of increasing internal resistance. 

 In itself, physics-informed features are more and more popular in hybrid modeling, in 

which the measurable quantities are converted depending on the known electrochemical 

processes. These can be normalized capacity loss, resistance growth trends or cycle 
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energy efficiency. These characteristics make the models more interpretable and enable 

them to take into account basic insights of battery chemistry. 

The feature engineering is important, since it directly determines the predictive accuracy of 

data-driven models [13]. The features are carefully filtered and preprocessed into the features 

like noise cancelling, missing data, and normalization to assure that the models can learn 

meaningful patterns and not spurious correlations. 

Model Training 

With features extracted, the next step is to train predictive models that map these features to 

SOH and, subsequently, forecast RUL. Models can be data-driven, physics-based, or hybrid, 

each with distinct advantages: 

 Data-driven models apply machine learning models like support vector regression 
(SVR), random forests and gradient boosting, or deep learning models like Long Short-

Term Memory (LSTM) networks, which are well-suited to modeling temporal 

relationships in sequence data. 

 Physics-based models use equivalent circuit models (ECMs) or electrochemical state-

space models to have a predictive model of internal states, which are interpretable and 

allow prediction to be based on physical laws. 

 The hybrid models are a combination of both and include examples such as physics-

informed features as an input to deep learning models. 

Training is done with caution when it comes to the hyperparameter tuning, cross-validation 

and testing on different validation sets to prevent overfitting. Practically, k-fold cross-

validation or rolling-window validation is usually used to make sure that the model can be well 

generalized to various operational conditions. Root Mean Squared error (RMSE) and Mean 

Absolute error (MAE) and correlation to observed degradation trajectories are usually used to 

measure model performance. This is aimed at developing a model that is able to not only predict 

SOH at a particular time but also the trend of degradation, which is fundamental to effective 

RUL prediction. 

RUL Estimation 

After training, the model is used to predict the Remaining Useful Life. RUL estimation can be 

performed using several approaches: 

 Multi-step forecasting: Models like LSTMs are sequence based and they are used to 
predict future values of SOH across a series of cycles. RUL can be estimated by making 

extrapolations of these predictions until a pre-determined end-of-life limit is attained 

[14]. 

 Probabilistic forecasting: Bayesian models, Gaussian Process Regression (GPR), or 
particle filters have the ability to not only produce point estimates, but also uncertainty 

bands. This plays a critical role to make decisions with risk awareness in applications 

such as electric vehicles or in energy storage on a grid scale. 

 Health-state classification and transition modeling: There are frameworks in which 

battery health is discrete (e.g., is in state H1, H2, or H3) and the transition probability 

is used to predict how long it will take the battery to reach a critical state. This method 

is especially applicable in cases where the nonlinearity induced by operational 

variability or in cases where precision SOH estimation is difficult. 
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Finally, the method selected is based on the need of the application, the data available and 

acceptable trade-off between precision, computing complexity and readability. An effective 

methodology can be used to guarantee reliability and actionability of RUL predictions in order 

to provide effective maintenance planning, replacement planning, and risk reduction in 

practical energy-storage systems. 

 

Figure 2: Battery Health Prediction: Rul & Soh Estimation 

FINDINGS 

When comparing previous research on the estimation of battery health and the remaining useful 

life, it becomes apparent that the performance trends are similar in various methodological 

types. Although, there is no universal method to be used in all of the operating conditions, the 

literature provides definite advantages and disadvantages related to model-based, data-driven, 

and hybrid prognostic methods. These observations have been summarized and discussed as 

follows in the subsections that follow. 

Model-Based Prognostics 

Prognostic approaches that use electrochemical models or equivalent circuit models are 

appreciated to have a high degree of physical interpretability and stability. Explicitly modeling 

degradation processes including solid electrolyte interphase growth, lithium plating or internal 

resistance increase, these methods give some understanding on the underlying aging processes 

of batteries. This openness makes them especially appealing to safety critical applications, in 

which it is as crucial to know what causes degradation as it is to know how it will evolve. 

Nonetheless, literature findings show that model-based methods tend to be inaccurate when 

operating in real-world conditions [15]. Temperature variability, load dynamics, charging 

dynamics and manufacturing irregularities have nonlinearities that are hard to represent with 

constant model parameters. Moreover, the proper calibration of such models often involves a 

close understanding of the chemistry of battery and large amounts of experimental data, which 

is not always available. Subsequently, although model-based approaches are particularly 

accurate in the short term and stable behavior, their long-term predictions of RUL can be 

spoiled by operational uncertainty and sensor noise. 
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Data-Driven Models 

Machine learning and deep learning methods have demonstrated good predictive accuracy on 

a vast selection of benchmark datasets, and are data-driven. Support vector machines, random 

forests, and neural networks are models of degradation that are directly trained using historical 

data directly, without directly assuming any model of electrochemical behavior. Recurrent 

neural networks in particular long short-term memory (LSTM) networks are one of these that 

have been extensively documented to deliver low forecast errors in SOH estimation, as well as 

in long-horizon RUL forecasting [16]. 

Empirical findings of various studies show that the LSTM-based models are efficient in the 

ability to extract the temporal dependencies and nonlinear trends of degradation of battery 

aging data. These models are particularly effective in cases where high quality and large 

datasets are also present and operating conditions are within the range of conditions during 

training. However, there is no limitation of data-driven models. They may perform poorly on 

invisible operating regimes and their inability to be physically interpreted is an issue of concern 

in terms of trust and explainability especially in safety-critical energy storage systems. 

Hybrid Approaches 

Hybrid prognostic models, where physics-based models are combined with data-driven 

learning, are always found to be more robust and adaptive than nonspecialized ones in 

comparative studies. The interpretability and constraint analysis of physical models, as well as 

the flexibility of machine learning methods, can be combined to make hybrid methods better 

suited to deal with noisy measurements and variable operating conditions. An example would 

be the use of physics-informed features during neural network training, or the use of data-

driven corrections to account for errors in modeling in conventional degradation models. 

According to the reported results, hybrid methods tend to deliver better results than purely 

model-based or purely data-driven methods, especially in those cases where only partial data 

information is available, sensor uncertainty arises, or the usage pattern is highly dynamical. 

Even though these approaches bring with them a certain level of added complexity and 

computation costs, the tradeoff between accuracy, robustness, and interpretability they achieve 

is highly appropriate in the context of real-world battery management. In turn, hybrid 

prognostics are also becoming considered as a viable way to compromise in an attempt to 

achieve reliable SOH and RUL prediction in contemporary energy-storage systems. 
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Table 1: Comparative Analysis of Battery SOH and RUL Prediction Approaches 

Aspect Model-Based 

Prognostics 

Data-Driven 

Models 

Hybrid Approaches 

Core principle Relies on physics-based 

or electrochemical 

models to represent 

battery degradation 

mechanisms 

Learns degradation 

patterns directly 

from historical data 

using machine 

learning algorithms 

Integrates physical 

models with data-

driven learning to 

leverage strengths of 

both 

Interpretability High; model parameters 

and outputs have clear 

physical meaning 

Low to moderate; 

often treated as 

black-box models 

Moderate to high; 

physical constraints 

improve 

interpretability 

Prediction 

accuracy 

Reliable for short-term 

prediction under known 

conditions 

High accuracy, 

especially for long-

term RUL 

forecasting 

Generally high and 

more stable across 

varying conditions 

Robustness to 

Noise & 

Variability 

Limited; sensitive to 

parameter uncertainty 

and modeling 

assumptions 

Sensitive to unseen 

operating conditions 

and data quality 

Strong; better 

handling of noisy and 

non-stationary data 

Data requirement Low to moderate; 

requires domain 

knowledge and 

calibration data 

High; performance 

improves with large, 

diverse datasets 

Moderate; benefits 

from both historical 

data and physical 

insight 

Computational 

complexity 

Low to moderate High, especially for 

deep learning 

models 

Moderate to high due 

to model integration 

Generalization 

ability 

Limited across different 

battery types or usage 

profiles 

Often poor without 

retraining 

Improved 

generalization due to 

physical constraints 

Suitability for 

Real-World 

Applications 

Suitable for safety 

analysis and controlled 

environments 

Suitable for data-

rich systems with 

stable operating 

regimes 

Highly suitable for 

practical battery 

management systems 

Typical use cases Early-stage design, fault 

diagnosis, safety 

assessment 

Long-term RUL 

forecasting, 

condition 

monitoring 

Online health 

monitoring, adaptive 

battery management 

Discussion 

The comparative review of battery health prediction systems indicates a substantial 

advancement and a current shortcoming of SOH estimation and RUL forecasting. Although 

sophisticated modeling methods have enhanced the accuracy and strength of prediction, there 

are still a number of technical and practical problems that render their extensive application 

not feasible to real-life energy-storage systems. This section talks about such challenges, the 

practical implications of better prognostic capabilities and where future research might go 

without the need to go further. 
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Challenges 

Nevertheless, battery prognostics is a complicated and developing field of research even when 

significant progress is achieved in the field of modeling and data analytics. The limitation of 

measurement is a basic issue. There are many critical internal battery conditions including 

lithium inventory loss, electrode degradation or internal resistance increase, which cannot be 

directly measured during normal operation [17]. They instead have to be observed using 

external cues like voltage, current and temperature which are normally noisy and are affected 

by environmental and operational variability. Incorrect sensor measurements, sampling 

constraints and communication delays also make it hard to estimate SOH in real-time especially 

in large or distributed energy-storage systems. Lack of data and variation is also one of the 

significant limitations. Good quality degradation data with long operational life, different 

application pattern, and different environmental conditions are scarce. The majority of publicly 

available data sets are gathered in the controlled laboratory conditions and might not reflect the 

real life behavior completely. Such inability to have a variety of data may result in biased 

models that may work well on benchmark data but fail when used in real-life situations. 

Another problem that persists is model generalization. Models that have been trained on a given 

battery chemistry, form factor or usage profile are frequently unable to extrapolate to other 

systems. The differences in manufacturing, operating conditions and user operation bring along 

divergences which are hard to encompass in one predictive model. This is a specific challenge 

to approaches based on data, where it depends strongly on the statistical characteristics of 

training data, and can tend to become invalid as conditions not seen during training are 

encountered. 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

The problem of a complex and interdisciplinary nature proposes to predict the health and useful 

life of a battery necessitating a combination of the understanding of electrochemical principles, 

statistical modeling with machine learning methods. Advances in data-driven approaches 

especially deep neural networks with the ability to model nonlinear and temporal patterns of 

degradation have achieved significant gains in the accuracy of prognostic across a spectrum of 

benchmark studies. Simultaneously, physics-based models remain significant with respect to 

being interpretable and offering physically meaningful restrictions to facilitate safe and reliable 

operation. 

Frameworks that involve a combination of both physical intuition and data-guided flexibility 

are known as hybrid prognostic frameworks, and they have developed into one of the most 

promising paths. These methods bring out a trade-off between accuracy, robustness, and 

explainability and are therefore suitable to be applied in practice within battery management 

systems under varying and uncertain conditions. Nonetheless, issues of data availability, 

generalization of models and real-time implementation remain. 

Further attempts of standardized datasets and real world validation and adaptive online 

prognostic methods are likely to increase the reliability and utility of SOH and RUL estimation. 

With energy-storage systems becoming an even larger part of transportation and power 

infrastructure, effective battery health predictive analytics will be essential in enhancing safety, 

improving asset durability, and finding sustainable energy solutions.  

Recommendations 

Irrespective of these obstacles, the correct SOH and RUL estimation has significant practical 

value in various areas of use. In electric cars, predictive maintenance, limited failures, and 
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informed reuse of battery or second-life choices can be made because of reliable predictions of 

RUL. Enhanced safety is also enabled with the aid of better health estimation as defective 

degradation patterns are identified early. In the energy storage systems of the grid scale, 

prognostics is crucial in scheduling, load balancing and managing the assets efficiently. By 

predicting trends in degradation, the operators are able to readjust the operations strategy in 

order to increase battery life, minimize the replacement costs, and enhance the overall 

reliability of the system [18]. More accurate health predictions, in turn, can be used to improve 

the value of warranty policies and lifecycle costs of manufacturers and operators, which will 

enhance the economic justification of energy-storage technologies. 

Future Directions 

Future studies need to be dedicated towards establishing more general and adaptive prognostic 

models. Techniques of transfer learning and domain adaptation provide promising 

opportunities to use the experience of one battery system in another and minimise data needs 

and enhance the resistance of models to cross-chemistry and cross-application. It is also 

necessary to continue working on hybrid models. The incorporation of physical restrictions and 

electrochemical knowledge into data-driven models can enhance interpretability, stability, and 

the lack of dependence on big data. These models are more appropriate to manage noisy 

measurements and variability of operation used in the real-life application. Lastly, more focus 

is to be put on online and adaptive prognostics as models are updated with the latest data. 

Uncertainty-conscious prediction schemes and real-time learning systems will be essential in 

the implementation in battery management systems, where constant health awareness and 

decision-making at various points in the battery life cycle are required. 
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