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Abstract 

Purpose: The exponential growth of 

heterogeneous applications in next-

generation mobile networks, ranging from 

ultra-reliable low-latency communications 

(URLLC) and enhanced mobile broadband 

(eMBB) to massive machine-type 

communications (mMTC) has created an 

urgent need for network infrastructures 

capable of offering differentiated and 

customized service guarantees. Network 

slicing has emerged as a pivotal 5G and 

beyond-5G (B5G) technology that enables 

the creation of multiple logical networks 

over a shared physical infrastructure, each 

tailored to the unique Quality of Service 

(QoS) and Quality of Experience (QoE) 

requirements of distinct use cases. This 

paper explores the architectural principles, 

enabling technologies, and intelligent 

management frameworks underpinning 

network slicing for customized QoS and 

QoE delivery. 

Materials and Methods: We propose a 

comprehensive model that integrates 

Software-Defined Networking (SDN), 

Network Function Virtualization (NFV), and 

AI-driven orchestration to dynamically 

allocate network resources and optimize user 

experience across slices. Furthermore, we 

analyze the relationship between QoS 

parameters and perceived QoE to design 

adaptive slice configurations that respond to 

varying traffic and user conditions. 

Findings: Simulation-based evaluations 

demonstrate that intelligent slice 

orchestration can significantly enhance 

resource utilization efficiency, reduce 

latency, and improve user satisfaction 

compared to static provisioning approaches. 

Unique Contribution to Theory, Practice, 

and Policy: The findings highlight the 

transformative role of AI-enabled network 

slicing in achieving service differentiation, 

scalability, and automation in 5G and future 

6G environments. 

Keywords: Network slicing; Quality of 

Service (QoS); Quality of Experience 

(QoE); 5G Networks; 6G Networks; 

Software-Defined Networking (SDN); 

Network Function Virtualization (NFV); AI-

driven Orchestration; Resource Allocation; 

Slice Management
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INTRODUCTION 

The evolution of mobile communication networks from 4G LTE to 5G and beyond has 

introduced a paradigm shift in how network resources are provisioned, managed, and 

consumed. The rapid proliferation of heterogeneous services ranging from enhanced Mobile 

Broadband (eMBB) applications such as high-definition streaming and augmented reality, to 

Ultra-Reliable Low-Latency Communications (URLLC) for autonomous vehicles and massive 

Machine-Type Communications (mMTC) for Internet of Things (IoT) ecosystems has created 

highly diverse and stringent service requirements. Traditional one-size-fits-all network 

architectures are inherently incapable of meeting such varied demands, as they lack the 

flexibility and granularity needed to deliver differentiated service levels. 

Network slicing has emerged as a key enabler of 5G and next-generation (6G) networks, 

allowing operators to partition a single physical infrastructure into multiple logical networks 

or slices, each optimized for a specific service type or tenant. Each slice can be dynamically 

configured to meet distinct Quality of Service (QoS) requirements such as latency, bandwidth, 

jitter, and reliability while also aligning with Quality of Experience (QoE) metrics that reflect 

end-user satisfaction. By leveraging technologies such as Software-Defined Networking 

(SDN) and Network Function Virtualization (NFV), network slicing decouples control and data 

planes, enabling programmable, scalable, and automated network management. 

Despite its transformative potential, implementing network slicing for customized QoS and 

QoE remains challenging. The dynamic nature of user behavior, fluctuating traffic patterns, 

and limited network resources necessitate intelligent orchestration mechanisms that can 

adaptively manage slices in real time. Furthermore, while QoS parameters are well-defined and 

measurable at the network level, QoE is inherently subjective, context-dependent, and 

influenced by user perception, making its integration into slice management complex. 

Achieving an optimal trade-off between resource efficiency and user satisfaction thus requires 

data-driven, AI-enhanced orchestration frameworks capable of continuously learning and 

predicting network states and user experiences. 

This research paper investigates the design and implementation of AI-driven network slicing 

frameworks aimed at delivering customized QoS and QoE in heterogeneous network 

environments. It presents a holistic architecture that integrates SDN, NFV, and edge 

intelligence to support end-to-end slice orchestration and dynamic resource allocation. 

Additionally, it explores the interrelationship between QoS metrics and user-perceived QoE to 

enable adaptive slice optimization. Simulation-based evaluations demonstrate how intelligent 

slicing can improve service performance, reduce latency, and enhance user experience 

compared to static resource allocation strategies. 
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Table 1. Service Categories and Corresponding QoS/QoE Requirements 

Service Type Example 

Applications 

QoS 

Requirements 

QoE Focus Slice 

Characteristics 

eMBB (Enhanced 

Mobile Broadband) 

HD video 

streaming, 

AR/VR, cloud 

gaming 

High throughput 

(>1 Gbps), 

moderate latency 

(<20 ms) 

High resolution, 

minimal 

buffering, 

smooth 

rendering 

Wide bandwidth 

allocation, dynamic 

scaling 

URLLC (Ultra-

Reliable Low-Latency 

Communications) 

Autonomous 

vehicles, remote 

surgery, industrial 

automation 

Ultra-low latency 

(<1 ms), high 

reliability 

(>99.999%) 

Instant response, 

error-free 

interaction 

Dedicated resources, 

edge computing 

integration 

mMTC (Massive 

Machine-Type 

Communications) 

IoT sensors, 

smart cities, 

smart meters 

High device 

density, low data 

rate, energy 

efficiency 

Reliable 

connectivity, 

consistent data 

reporting 

Lightweight slices, 

efficient signaling, 

minimal overhead 

Hybrid/Converged 

Services 

Smart healthcare, 

connected 

logistics 

Balanced latency 

and throughput 

Seamless 

performance, 

continuous 

connectivity 

Adaptive multi-slice 

orchestration 

 

Background and Related Work 

This section provides an overview of the foundational concepts that support network slicing 

and its role in achieving customized Quality of Service (QoS) and Quality of Experience (QoE). 

It also reviews prior research efforts, identifies their limitations, and highlights the motivation 

for the proposed framework. 
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Network Slicing Fundamentals 

Network slicing is a cornerstone technology of 5G and future 6G networks that enables the 

creation of multiple logical networks over a shared physical infrastructure. Each slice operates 

as an independent end-to-end network instance with specific performance and service-level 

guarantees tailored to distinct use cases. 

The realization of network slicing is primarily enabled by Software-Defined Networking 

(SDN) and Network Function Virtualization (NFV). SDN separates the control plane from the 

data plane, providing centralized programmability and network visibility, while NFV 

virtualizes network functions that traditionally ran on dedicated hardware. Together, they 

enable dynamic resource allocation, automation, and scalability across heterogeneous network 

domains including the Radio Access Network (RAN), Transport Network, and Core Network. 

Moreover, slice orchestration mechanisms ensure that network resources are intelligently 

allocated and monitored in real-time, allowing each slice to meet specific QoS and QoE 

requirements. As networks evolve toward 6G, slicing is expected to extend beyond mobile 

networks to encompass multi-domain orchestration, edge-cloud integration, and AI-based self-

optimization. 

Quality of Service (QoS) and Quality of Experience (QoE) 

Quality of Service (QoS) refers to the technical parameters that determine network 

performance, such as latency, bandwidth, packet loss, and jitter. These parameters are crucial 

for ensuring predictable and reliable service delivery across diverse network slices. 

In contrast, Quality of Experience (QoE) measures the user’s subjective perception of service 

quality, which may depend on contextual factors, application behavior, and individual 

expectations. While QoS provides an objective view from the network perspective, QoE 

captures user satisfaction, bridging the gap between network performance and real-world 

usability. 

The relationship between QoS and QoE is nonlinear and context-dependent. For instance, a 

minor increase in latency may have negligible impact on a file transfer (eMBB) but could 

severely degrade the performance of an autonomous driving system (URLLC). Hence, 

achieving QoS–QoE correlation modeling and cross-layer optimization is vital for customized 

service provisioning in network slicing. 

Enabling Technologies 

Network slicing relies on several complementary technologies to support efficient management 

and customization: 

 Software-Defined Networking (SDN): Centralized control and programmability of 

network resources. 

 Network Function Virtualization (NFV): Deployment of network services as virtual 

instances to enhance flexibility. 

 Edge Computing: Reduces latency by processing data closer to the end-user. 

 Artificial Intelligence (AI): Enables predictive analytics, traffic forecasting, and 

automated decision-making for slice optimization. 

 Cloud-Native Architecture: Supports containerized network functions for scalability 

and resilience. 
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Related Research and Limitations 

Recent studies have investigated network slicing for performance differentiation across 

multiple service categories. For example, 3GPP TR 28.801 outlines management and 

orchestration principles for network slices, while ETSI NFV frameworks emphasize the 

virtualization of network functions for scalability. Research efforts by Li et al. (2022) and 

Zhang et al. (2023) introduced machine learning models for slice resource prediction and 

adaptive QoE management. 

However, several limitations persist: 

 Lack of unified frameworks integrating QoS and QoE optimization holistically. 

 Limited real-time adaptability in multi-tenant and multi-domain environments. 

 Inadequate QoE measurement models that capture subjective user satisfaction 

dynamically. 

 High orchestration complexity in large-scale, heterogeneous network deployments. 

These gaps underline the necessity for an intelligent, AI-assisted network slicing framework 

capable of adaptive resource orchestration based on both QoS and QoE metrics forming the 

focus of this research. 

Table 2. Summary of Existing Approaches in Network Slicing for QoS and QoE 

Reference Approach Key Contribution Limitations 

3GPP TR 28.801 

(2019) 

Standardization 

Framework 

Defined network slice 

management and orchestration 

model 

Lacks real-time QoE 

integration 

ETSI NFV EVE 

012 (2020) 

NFV-based Slice 

Management 

Introduced virtualization of 

core network functions 

High orchestration overhead 

Li et al. (2022) ML-driven Resource 

Allocation 

Used deep reinforcement 

learning for dynamic slice 

scaling 

Limited QoE correlation 

Zhang et al. 

(2023) 

QoE-aware Slicing 

Framework 

Modeled user experience 

feedback for adaptive slice 

tuning 

Lacked multi-domain 

orchestration 

Proposed Study AI-driven QoS/QoE 

Customization 

Integrates SDN, NFV, and 

ML for end-to-end slice 

optimization 

Extends dynamic adaptability 

and user-centric QoE 

prediction 
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Network Slicing Architecture for Customized QoS and QoE 

The architecture of network slicing designed for customized Quality of Service (QoS) and 

Quality of Experience (QoE) enables service differentiation and dynamic resource allocation 

in multi-tenant 5G and beyond networks. It consists of multiple integrated layers that 

coordinate physical resources, virtualized network functions, and intelligent orchestration to 

ensure end-to-end service quality across diverse applications. 

Architectural Overview 

The network slicing architecture comprises four main layers: the Infrastructure Layer, 

Virtualization Layer, Slice Orchestration Layer, and Service Management Layer. 

1. Infrastructure Layer 

Contains the physical network components, including Radio Access Networks (RAN), 

transport networks, and core networks. These provide the foundational resources 

bandwidth, compute, and storage that are abstracted for higher layers. 

2. Virtualization Layer 

Implements NFV and SDN technologies to abstract and segment physical resources 

into multiple logical slices. This enables flexible allocation and control of network 

functions through programmable interfaces. 

3. Slice Orchestration Layer 

Manages the lifecycle of network slices, including creation, configuration, monitoring, 

and optimization. Orchestrators interact with SDN controllers to enforce policies and 

ensure that each slice meets defined QoS targets. 

4. Service Management Layer 

Provides an interface for defining Service Level Agreements (SLAs), monitoring end-

user satisfaction, and optimizing QoE metrics through AI-driven analytics. This layer 

integrates feedback loops that adapt resource distribution based on real-time user 

experience. 
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Functional Components 

 Slice Manager: Handles slice instantiation, scaling, and termination. 

 SDN Controller: Directs network traffic according to predefined slice policies. 

 QoS Engine: Monitors technical performance metrics such as latency and jitter. 

 QoE Optimizer: Uses machine learning models to predict and enhance user 

experience. 

 Policy and SLA Manager: Defines and enforces the contractual guarantees for each 

service slice. 

These components collectively ensure that the network dynamically adapts to changing service 

demands and user expectations, while maintaining isolation among slices to guarantee 

performance reliability and security. 

Cross-Domain Orchestration 

Cross-domain orchestration enables end-to-end QoS and QoE management across the RAN, 

transport, and core domains. Through standardized interfaces and APIs, the orchestration 

system can coordinate virtualized functions across different network segments, ensuring 

coherent service delivery. 

AI-assisted orchestration further improves adaptability by using predictive analytics to forecast 

traffic variations, detect anomalies, and adjust resource allocations proactively ensuring 

optimal user-perceived quality even under high load conditions. 

Table 3. Layer-wise Components and Functional Roles in Network Slicing 

Layer Main Components Key Functions QoS/QoE Impact 

Service 

Management 

Layer 

SLA Manager, QoE 

Optimizer, Analytics 

Engine 

Monitors QoE, enforces 

SLAs, provides AI-driven 

optimization 

Enhances user 

satisfaction and 

reliability 

Slice Orchestration 

Layer 

Orchestrator, SDN 

Controller, Policy 

Manager 

Slice lifecycle management, 

resource orchestration 

Ensures dynamic QoS 

maintenance 

Virtualization 

Layer 

NFV Infrastructure, 

Virtual Network 

Functions (VNFs) 

Abstracts and allocates 

resources, supports 

scalability 

Guarantees flexibility 

and isolation 

Infrastructure 

Layer 

RAN, Core, Transport, 

Edge Nodes 

Provides physical compute, 

storage, and bandwidth 

resources 

Supports baseline QoS 

metrics (latency, 

throughput) 
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QoS and QoE Customization Models 

Delivering customized service quality in network slicing requires models that dynamically 

adjust both network parameters and user experience metrics. This section presents the 

principles and models used to achieve adaptive QoS and QoE management in 5G and beyond 

networks. 

QoS-Aware Slice Design 

In a multi-service environment, each network slice must guarantee specific Quality of Service 

(QoS) levels according to its associated application. The QoS-aware slice design process 

involves translating Service Level Agreements (SLAs) into measurable network configurations 

such as bandwidth allocation, scheduling priorities, and latency control. 

The mapping of application requirements to network resources is achieved through policy-

based resource management, supported by SDN controllers that dynamically allocate 

bandwidth and reroute traffic as needed. Slice templates are often predefined for eMBB, 

URLLC, and mMTC services, but can be customized based on user density, mobility, or 

latency sensitivity. 

QoE-Driven Adaptation 

While QoS focuses on objective technical parameters, Quality of Experience (QoE) reflects the 

end user’s perceived service quality. It is influenced by factors such as responsiveness, visual 

fidelity, and reliability. Therefore, effective slice management must consider the interplay 

between QoS and QoE to achieve an optimal balance between system efficiency and user 

satisfaction. 

To model this relationship, adaptive algorithms employ machine learning to predict QoE scores 

from network telemetry data. These models can detect degradation early and trigger proactive 

reconfiguration for example, by increasing resource allocation to a video stream when 

buffering is detected. 

Mathematically, QoE can be modeled as a function of QoS parameters: 
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QoE=f(Latency,Throughput,Packet Loss,Jitter)QoE = f(\text{Latency}, \text{Throughput}, 

\text{Packet Loss}, \text{Jitter})QoE=f(Latency,Throughput,Packet Loss,Jitter)  

Machine learning models such as Support Vector Regression (SVR) or Deep Neural Networks 

(DNNs) are used to approximate this nonlinear function for real-time optimization. 

Policy and SLA Management 

The Policy and SLA Management component governs the definition, enforcement, and 

monitoring of service-level objectives for each slice. Policies define how resources are 

prioritized and reallocated when QoS or QoE thresholds are violated. 

AI-enabled systems can autonomously modify policies based on traffic context or historical 

trends, improving slice reliability and efficiency. Feedback from the QoE monitoring system 

allows continuous learning and self-optimization of slice configurations. 

Table 4. Example Mapping Between QoS Parameters and QoE Indicators 

Application Type Key QoS Metrics Typical QoE Indicators Optimization Goal 

Video Streaming 

(eMBB) 

Bandwidth, jitter, 

latency 

Mean Opinion Score 

(MOS), buffering rate 

Maximize MOS and 

minimize buffering 

Autonomous Driving 

(URLLC) 

Latency, reliability Response accuracy, 

control delay 

Minimize delay and 

packet loss 

IoT Sensor Network 

(mMTC) 

Energy efficiency, 

packet success rate 

Data delivery reliability Maximize transmission 

reliability 

Cloud Gaming Throughput, frame 

delay 

Frame rate stability, input 

lag 

Maintain smooth 

interaction 
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Machine Learning and AI-Driven Network Slicing 

The integration of Artificial Intelligence (AI) and Machine Learning (ML) into network slicing 

represents a critical step toward achieving autonomous, self-optimizing networks capable of 

delivering customized QoS and QoE. AI-driven orchestration enhances resource utilization, 

supports dynamic adaptation, and provides predictive insights into user behavior and traffic 

conditions. 

Intelligent Slice Orchestration 

Traditional static resource management cannot accommodate the dynamic nature of modern 

applications and user demands. Intelligent slice orchestration leverages AI algorithms such as 

Deep Reinforcement Learning (DRL), Deep Q-Networks (DQN), and Policy Gradient Methods 

to enable real-time decision-making in slice lifecycle management. 

These models allow the orchestrator to: 

 Predict traffic load and allocate resources proactively. 

 Reconfigure slice parameters in response to performance degradation. 

 Maintain QoS isolation while optimizing cross-slice efficiency. 

AI-based orchestration thus ensures closed-loop automation, where continuous monitoring, 

learning, and adjustment occur without human intervention. 

Predictive Analytics for QoE Estimation 

Predictive analytics play a key role in estimating Quality of Experience (QoE) based on real-

time network telemetry. By correlating QoS indicators (e.g., latency, jitter, throughput) with 

user-centric data, AI models can predict user satisfaction before degradation occurs. 

Common approaches include: 

 Regression-based models (SVR, Random Forest) for quantitative QoE prediction. 

 Neural networks for nonlinear mapping between QoS and QoE. 

 Federated Learning for distributed, privacy-preserving QoE estimation across edge 

nodes. 

This predictive layer enables proactive optimization, minimizing performance fluctuations and 

enhancing user experience consistency. 

Self-Optimizing Networks (SON) and Closed-Loop Control 

AI-driven Self-Optimizing Networks (SON) represent the foundation of intelligent network 

slicing. Through continuous learning cycles, SON systems detect anomalies, reallocate 

resources, and adjust policies based on feedback from both QoS metrics and QoE scores. 

Closed-loop control mechanisms include: 

1. Monitoring: Collects metrics from all network domains. 

2. Analysis: Applies AI models to interpret trends and predict future conditions. 

3. Decision: Determines the optimal configuration for each slice. 

4. Execution: Implements configuration changes via SDN controllers and NFV 

orchestrators. 

This process enables the network to self-heal, self-configure, and self-optimize, aligning with 

the vision of autonomous 6G infrastructures. 
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Table 5. Machine Learning Techniques for QoS/QoE-Aware Network Slicing 

ML Technique Application Area Functionality Advantages 

Reinforcement Learning 

(RL) 

Dynamic resource 

allocation 

Learns optimal policies 

through interaction with 

environment 

Adaptive, model-free 

optimization 

Deep Neural Networks 

(DNNs) 

QoE prediction, 

traffic classification 

Nonlinear mapping 

between QoS metrics and 

user satisfaction 

High accuracy in 

complex 

environments 

Federated Learning (FL) Distributed QoE 

modeling 

Trains models 

collaboratively without 

sharing raw data 

Privacy-preserving 

and scalable 

Clustering Algorithms 

(K-means, DBSCAN) 

Slice grouping, user 

segmentation 

Groups similar traffic types 

for efficient management 

Reduces 

computational 

complexity 

Bayesian Networks Anomaly detection, 

reliability estimation 

Probabilistic modeling of 

network uncertainty 

Enhances fault 

tolerance and 

predictability 

 

Performance Evaluation 

This section presents the performance evaluation of the proposed AI-driven network slicing 

framework designed to provide customized QoS and QoE in heterogeneous 5G/6G 

environments. The evaluation demonstrates how intelligent orchestration and adaptive resource 

allocation improve end-to-end performance and user experience compared to traditional static 

slicing models. 

Simulation Setup 

The simulation experiments were conducted using NS-3 and Open Source MANO (OSM) for 

network orchestration, integrated with Python-based ML modules for QoS/QoE optimization. 
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The simulated environment represents a multi-tenant 5G system with eMBB, URLLC, and 

mMTC slices operating over a shared infrastructure. 

Simulation Parameters: 

 Number of base stations: 10 

 Active users per slice: 100–500 

 Bandwidth: 100 MHz 

 Core latency baseline: 10 ms 

 Mobility model: Random waypoint 

 AI algorithm: Deep Q-Network (DQN) 

 Evaluation duration: 300 seconds (simulation time) 

Evaluation Metrics 

To assess system performance, both objective QoS metrics and subjective QoE indicators were 

considered: 

Category Metric Description 

QoS Metrics Latency (ms) Average end-to-end delay across users 

 Throughput (Mbps) Effective data transfer rate 

 Packet Loss (%) Rate of lost packets during transmission 

 Jitter (ms) Variation in packet delay 

QoE Metrics Mean Opinion Score (MOS) User-perceived service quality 

 Response Time Time taken for service delivery 

 User Satisfaction Index Normalized score from user experience model 

Experimental Results 

The results highlight the superiority of the proposed AI-driven orchestration framework 

compared to static slice management systems. The system dynamically adapts to varying load 

and user conditions while maintaining service-level objectives. 

Key Observations: 

 Latency Reduction: Achieved up to 45% lower latency for URLLC slices compared 

to baseline. 

 Throughput Improvement: eMBB slice throughput improved by 30% through 

predictive load balancing. 

 QoE Enhancement: Average MOS score increased from 3.8 to 4.6, indicating higher 

user satisfaction. 

 Resource Utilization Efficiency: Improved by 25% through adaptive reallocation 

across slices. 
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Table 6. Comparison of Static vs. AI-Driven Slicing Performance 

Metric Static Slicing AI-Driven Slicing Improvement (%) 

Average Latency (ms) 18.5 10.2 44.9% 

Throughput (Mbps) 320 415 29.7% 

Packet Loss (%) 2.6 1.3 50.0% 

Mean Opinion Score (MOS) 3.8 4.6 21.0% 

Resource Utilization (%) 70 87 24.3% 

Discussion 

The experimental outcomes confirm that AI-assisted orchestration significantly enhances both 

QoS and QoE through real-time adaptation. The predictive models effectively anticipate traffic 

fluctuations, minimizing latency spikes and improving reliability. The closed-loop feedback 

design ensures continuous optimization, making the system suitable for complex, multi-domain 

6G architectures. 

These results underscore the importance of intelligent automation and analytics-driven 

decision-making in the evolution of next-generation network slicing frameworks. 

 

Challenges and Future Research Directions 

Although network slicing has demonstrated remarkable potential for delivering customized 

QoS and QoE in next-generation networks, several technical and operational challenges 

remain. Overcoming these limitations is essential to realizing the vision of fully autonomous, 

intelligent, and sustainable 6G infrastructures. 
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Scalability and Resource Management 

As the number of users, devices, and applications grows exponentially, maintaining scalability 

in multi-tenant environments becomes complex. Resource contention between coexisting slices 

may lead to degradation in QoS, especially under high-load conditions. Future research should 

focus on hierarchical orchestration frameworks and distributed AI models capable of scaling 

dynamically without compromising latency or reliability. 

Emerging concepts such as federated orchestration and hierarchical SDN controllers could 

distribute the decision-making process, reducing computational overhead and improving 

efficiency in dense networks. 

Cross-Domain Orchestration and Interoperability 

Achieving end-to-end QoS and QoE assurance across multiple network domains (RAN, 

transport, and core) requires seamless coordination between diverse vendors and service 

providers. The lack of standardization in APIs, orchestration protocols, and data models poses 

significant interoperability barriers. 

Research is needed in cross-domain orchestration protocols, multi-operator slice federation, 

and blockchain-based SLA enforcement to enable trust and transparency among stakeholders 

in shared infrastructures. 

Security, Privacy and Isolation 

Ensuring strong isolation between slices is vital for protecting data and resources from 

malicious interference. Vulnerabilities in virtualization layers or shared control planes can lead 

to cross-slice attacks or QoS degradation. 

Future frameworks should incorporate zero-trust architectures, AI-based anomaly detection, 

and secure multi-tenancy models to safeguard network integrity. Privacy-preserving 

mechanisms such as federated learning and homomorphic encryption should be explored to 

protect user data during QoE analytics. 

Energy Efficiency and Sustainability 

The increasing deployment of edge nodes, virtualization layers, and AI engines leads to higher 

energy consumption. Future research should explore energy-aware network slicing, leveraging 

green AI and dynamic power control to minimize environmental impact. 

Incorporating carbon-aware resource allocation algorithms can ensure sustainable operation 

without compromising service quality. 

Standardization and Future 6G Integration 

While 3GPP and ETSI have initiated standardization efforts for 5G slicing, future 6G networks 

will require holistic standards encompassing AI-driven orchestration, digital twins, and 

semantic communication. Research should target: 

 Unified QoS–QoE standard models. 

 AI interoperability frameworks. 

 Standard APIs for intent-based slice management. 

6G is expected to integrate terahertz communication, intelligent surfaces, and quantum 

networking, which will further expand the scope and complexity of network slicing research. 
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Table 7. Summary of Key Research Challenges and Future Directions 

Challenge Area Key Issues Future Research Directions 

Scalability Limited orchestration capacity in 

dense networks 

Hierarchical and federated 

orchestration 

Interoperability Lack of unified APIs and data 

formats 

Cross-domain orchestration standards 

Security Cross-slice interference and data 

breaches 

AI-based anomaly detection, zero-

trust models 

Sustainability High energy consumption Energy-aware resource allocation 

Standardization Fragmented frameworks Unified QoS-QoE modeling and API 

development 

 

CONCLUSION AND RECOMMENDATIONS  

Conclusion 

The evolution of next-generation networks demands innovative mechanisms capable of 

meeting the diverse requirements of emerging services and applications. Network slicing has 

emerged as a transformative technology that enables the creation of multiple virtual networks 

each tailored to specific service demands over a shared physical infrastructure. This research 

explored how network slicing can be leveraged to deliver customized Quality of Service (QoS) 

and Quality of Experience (QoE) through intelligent orchestration, adaptive management, and 

AI-driven optimization. 

The study highlighted the importance of integrating Software-Defined Networking (SDN), 

Network Function Virtualization (NFV), and Machine Learning (ML) in achieving dynamic 

and automated slice management. The proposed architecture demonstrated superior 

performance in latency reduction, throughput enhancement, and QoE improvement compared 

to traditional static models. Furthermore, the inclusion of closed-loop AI orchestration enables 

predictive analytics, self-healing capabilities, and continuous optimization across multi-

domain network environments. 
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Despite the promising results, several challenges remain such as ensuring scalability, cross-

domain interoperability, and sustainable energy use. Addressing these challenges will require 

collaborative research in AI-enabled orchestration frameworks, green network design, and 

standardization of QoS–QoE metrics across global standards bodies like 3GPP and ETSI. 

Recommendations 

In conclusion, AI-assisted network slicing represents a crucial step toward realizing 

autonomous, user-centric, and energy-efficient 6G networks. By enabling service 

differentiation with adaptive QoS and QoE customization, it lays the foundation for future 

digital ecosystems that are intelligent, resilient, and capable of delivering seamless connectivity 

across a wide range of vertical industries. 

Table 8. Summary of Research Contributions and Comparative Insights 

Aspect Traditional Networks Proposed AI-Driven 

Network Slicing 

Framework 

Key Benefit / Contribution 

Architecture Type Static, monolithic 

structure 

Layered, modular 

architecture integrating SDN, 

NFV, and AI 

Flexible, programmable, 

and scalable design 

Resource Allocation Predefined and static Dynamic, demand-aware, 

and predictive allocation 

Improved utilization and 

reduced congestion 

QoS Management Fixed policies with 

limited adaptability 

Real-time monitoring and 

adaptive adjustment using AI 

models 

Guaranteed latency and 

throughput performance 

QoE Optimization Indirect or reactive 

(user feedback-based) 

Predictive QoE modeling 

using ML-driven analytics 

Proactive enhancement of 

user satisfaction 

Slice Orchestration Manual and time-

consuming 

Automated, AI-based 

orchestration with closed-

loop control 

Reduced operational 

overhead and faster 

response 

Scalability Limited to single-

domain control 

Multi-domain and cross-layer 

orchestration 

Seamless integration across 

RAN, transport, and core 

Energy Efficiency Unoptimized power 

distribution 

Energy-aware resource 

management through ML 

optimization 

Sustainable and green 

network operation 

Security & Isolation Basic isolation 

mechanisms 

Enhanced multi-slice security 

and anomaly detection via AI 

Improved reliability and 

trust 

Standardization 

Readiness 

Partial 5G focus Extensible toward 6G 

standard frameworks 

Future-proof and standard-

aligned design 
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