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Abstract 

Purpose: The research focuses on detecting 

and mitigating Distributed Denial of Service 

(DDoS) attacks in cloud environments. It 

aims to evaluate the effectiveness of machine 

learning models, particularly the CNN-

LSTM hybrid model and the ID3 decision 

tree, in ensuring cloud security. 

Materials and Methods: For this study, the 

CIC-DDoS2019 dataset was used as the 

primary source of data. The dataset was 

divided into training and testing sets using an 

80:20 split to ensure robust evaluation. Two 

models were selected for comparison: the 

CNN-LSTM hybrid model and the ID3 

decision tree. The CNN-LSTM model was 

designed to combine the strengths of 

convolutional neural networks for spatial 

feature extraction with long short-term 

memory networks for sequence learning, 

while the ID3 decision tree served as a 

baseline algorithm to evaluate how a simpler, 

rule-based approach performs against 

advanced deep learning architectures. 

Findings: The experimental results showed 

that the CNN-LSTM hybrid model 

significantly outperformed the ID3 decision 

tree method. Specifically, the CNN-LSTM 

model achieved a recall of 0.97, precision of 

0.98, and an F1-score of 0.98, with an overall 

accuracy of 98.5% in detecting DDoS 

attacks. Its superior performance can be 

attributed to its ability to integrate spatial 

feature extraction and temporal sequence 

learning effectively. In contrast, the ID3 

decision tree model delivered below-average 

results when compared to the CNN-LSTM, 

although it remained a usable solution in 

certain scenarios due to its simplicity and 

ease of implementation. 

Unique Contribution to Theory, Practice 

and Policy: The CNN-LSTM hybrid model 

emerges as a highly effective solution for 

DDoS detection in cloud environments and 

should be prioritized when developing 

advanced security frameworks. However, 

decision tree algorithms such as ID3 still hold 

relevance, especially in resource-constrained 

environments where computational 

efficiency and model simplicity are critical 

considerations. 

Keywords: DDoS attacks, Cloud security, 

Threat detection, Long Short-Term Memory 

(LSTM), CNN,RNN,Machine learning(ML), 

CIC-DDoS2019 dataset, Cloud 

Environment. 
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INTRODUCTION 

An advanced kind of denial-of-service attack called a DDoS floods the target or associated 

infrastructure with overwhelming amounts of malicious data. A network of infected computers 

and other devices, known as bots, is used to do this under the command of an attacker from a 

distance. It causes a major decrease in bandwidth and connection, which in turn disrupts all 

network services. Service degradation and total service denial cause the greatest losses in cloud 

ecosystems [1]. DDoS attacks aim to undermine legitimate users' access to resources. A 

malicious flood overwhelms the network, causing it to surpass its bandwidth capacity and 

interrupt services. The intended recipients include banking organizations, healthcare providers, 

government entities, and even low-key public networks. 

 

Figure 1: DDoS Attacks in Cloud environment[2]. 

DDoS assaults in the cloud are different from those in conventional networks [3]. This is 

because, in addition to the effects of DDoS attacks, which include service interruption, financial 

loss from outages, harm to a brand's reputation, attack mitigation expenses, etc., there are other 

ways that attacks can affect the cloud, including increased costs from autoscaling, additional 

energy expenses, collateral damage to cloud computing components, data and service 

migrations between cloud environments, and adverse effects from cohosted VMs. Cloud DDoS 

causes an assault known as DDoS [4].  

However, machine learning (ML) plays an important role in enhancing the ability to predict and 

mitigate DDoS attacks. These capabilities are primarily realized through two key areas: 

predictive modeling and mitigation strategies [5]. Both areas leverage the power of ML to 

analyze network traffic, identify potential threats, and respond effectively to minimize the 

impact of attacks. Predictive modeling involves training ML algorithms on historical data to 

recognize patterns that may indicate a DDoS attack. 

Despite extensive research on DDoS detection in traditional networks, there remains a gap in 

addressing the unique characteristics and vulnerabilities of cloud environments. Many existing 

solutions fail to capture the dynamic scaling, multi-tenancy, and resource-sharing aspects 

inherent in the cloud, which leads to limitations in detection accuracy and delayed responses. 

This research gap highlights the need for advanced detection methods tailored specifically to 

cloud infrastructures. 
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Machine learning (ML) plays an increasingly important role in enhancing the ability to predict 

and mitigate DDoS attacks in the cloud. These capabilities are primarily realized through two 

key areas: predictive modeling and mitigation strategies [5]. Predictive modeling leverages 

historical data and traffic behavior patterns to anticipate potential attack vectors, enabling 

proactive defense mechanisms. Mitigation strategies, on the other hand, apply ML models in 

real time to distinguish between legitimate and malicious traffic, thereby reducing false positives 

and ensuring continuous service availability. By combining these approaches, ML offers 

adaptive, scalable, and intelligent solutions that align with the dynamic nature of cloud 

computing. 

This study specifically explores the efficacy of hybrid deep learning models, such as CNN-

LSTM, alongside traditional algorithms like the ID3 decision tree, in detecting DDoS attacks in 

cloud environments. The objective is to fill the research gap by comparing advanced and 

conventional ML approaches to determine their strengths, weaknesses, and applicability in 

enhancing cloud security. 

Motivation and Contributions of the Study 

Cloud computing has become more important for important activities, making it vulnerable to 

DDoS assaults. These cyberattacks lead to both substantial service interruptions and 

compromised information security which demands significant financial settlements. Modern 

security solutions struggle to address the increasing complexity and size of current cyberattacks. 

Advanced intelligent solutions have become essential because DDoS threats require proactive 

detection and mitigation capabilities. The promising field of machine learning allows analysts 

to handle massive data while detecting complex attack patterns through fast reaction to emerging 

threats. By integrating these techniques, organizations can enhance cloud security, minimize 

downtime, and ensure the reliability of their services in the face of increasingly dynamic cyber 

challenges. Here are the main points from this study: 

 Utilizing the CICDDoS2019 dataset, which includes DDoS attack traffic and normal 

traffic data, for training and evaluating the models. 

 Applying data preprocessing techniques like handling null and missing values, removing 

duplicate entries, one-hot encoding, and normalization to ensure optimal data preparation. 

 Evaluating and comparing the performance of CNN-LSTM, ID3 for detecting and 

mitigating DDoS attacks. 

 Model efficacy and false positive/detection performance balance may be assessed 

employing assessment measures including F1-score, recall, accuracy, and precision. 

Organization of the paper 

Here is the structure of the paper: Section I introduces ML for DDoS detection in cloud security. 

Section II reviews related research on machine learning techniques for DDoS mitigation. 

Section III covers data preprocessing, feature selection, and evaluation metrics. Section IV 

compares models with key performance visualizations. Section V concludes with findings and 

recommendations for future improvements. 

This study demonstrates that the CNN-LSTM hybrid model outperforms the ID3 decision tree 

in detecting DDoS attacks within cloud environments. The novelty of this work lies in both the 

choice of dataset and the hybrid modeling approach. Unlike much of the existing literature that 

continues to rely on legacy datasets such as KDD99 and NSL-KDD, our research employs the 

CIC-DDoS2019 dataset, which incorporates more realistic traffic distributions, updated attack 
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scenarios, and multi-vector DDoS patterns. This choice directly addresses the gap in realism 

and transferability that has limited the applicability of many prior studies. 

The selection of models also reflects a deliberate methodological positioning within the 

literature. The CNN-LSTM model was chosen because it combines the spatial feature extraction 

capabilities of CNNs with the temporal sequence learning of LSTMs, enabling the detection of 

both instantaneous anomalies and long-range dependencies in attack traffic. Prior works often 

focus on CNN or LSTM in isolation, reporting moderate improvements but overlooking the 

complementary strengths of a hybrid approach. By integrating these two architectures, this study 

advances detection accuracy, achieving .Accuracy = 99.9%, Precision = 0.98, Recall = 0.97, F1-

score = 0.98, and FPR = 0.02, which collectively surpass the benchmarks reported in earlier 

deep learning studies. 

In contrast, the ID3 decision tree was included as a baseline algorithm to represent lightweight, 

interpretable, and resource-efficient approaches that have been widely studied in intrusion 

detection research. While its performance was inferior (lower accuracy and higher FPR), it 

provides an important comparative reference: decision tree methods are attractive for scenarios 

with limited computational resources, but they struggle to generalize across the high-

dimensional and dynamic nature of cloud traffic. The inclusion of ID3 thus reinforces the 

argument that conventional classifiers cannot adequately address the unique demands of cloud-

based DDoS detection, especially under evolving attack patterns. 

LITERATURE REVIEW 

This section highlights the literature review that examines machine learning-based approaches 

for detecting and mitigating DDoS attacks to enhance cloud security. Key focuses include 

leveraging advanced ML and DL models. 

In this study, Idhammad, Afdel and Belouch (2018) provide a DDoS detection method that uses 

the Exra-Trees algorithm, Co-clustering, Information Gain Ratio, and network entropy 

estimates in a sequential online fashion. To improve accuracy and decrease false positive rates, 

the unsupervised component of the method may filter out typical traffic data that is unrelated to 

DDoS detection. In contrast, the supervised component enables precise DDoS traffic 

classification while simultaneously lowering the unsupervised component's false positive rates. 

Various tests were carried out to evaluate a proposed strategy employing 3 publicly available 

datasets: NSL-KDD, UNB ISCX 12, and UNSW-NB15. There is an accuracy98.23%the NSL-

KDD dataset, 99.88%the UNB ISCX 12, and 93.71%the UNSW-NB15dataset, with 

corresponding FPR of 0.33%, 0.35%, and 0.46%, respectively [6]. 

In this study, Khuphiran et al. (2018) has been discussion about using machine learning methods 

to identify DDoS attacks. Deep Feed Forward (DFF), a newly developed DL algorithm, is pitted 

against the time-honored SVM. These two techniques are evaluated using the DARPA 2009 

DDoS assaults dataset and the DARPA Scalable Network Monitoring dataset. A possible way 

to speed up the categorization process is to preprocess the dataset. Results show that after 

289.614 seconds of training, the DFF DL system attained a respectable 99.63% accuracy. A 

training time of 371.118 seconds was sufficient for SVM to achieve a 93.01%accuracy rate [7].  

In this study, Li and Lu, (2019) provide an alternative DDoS detection technique called LSTM-

BA that integrates the LSTM with the Bayes methodology. With LSTM method's high-

confidence LSTM module outputs, they can detect portions of DDoS assaults. They use the 

Bayes method to increase the accuracy of the second evaluation for those outputs when 

confidence is low. The publicly accessible datasets of ISCX2012 were used to verify their 

suggested technique. The outcomes display that LSTM-BA performs better. To be more 
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specific, when compared to the modern approach, LSTM-BA improves detection accuracy by 

0.16%, reaching 98.15%[8]. 

In this study, Umar et al. (2019) an assessment of several machine learning methods, including 

RF, NB, IBK, and MLP, using an HTTP DDoS attack dataset empirically. A total of 17,512 

examples were included in the dataset, with 10256 representing conventional attacks and 7256 

representing HTTP DDoS attacks. The attacks included 21 characteristics. Random Forest 

method outperformed all others in the performance test, with a minimal FPR of 0.001% and an 

accuracy of 99.94%. Defenses against DDoS attacks rely heavily on time-tested conventional 

methods. However, as of yet, there is no foolproof method for detecting or preventing 

DDoS assaults. A ML-based IDS is one of the countermeasures put in place to prevent malicious 

intrusions[9]. 

In this study, Calvert and Khoshgoftaar (2019) assess how data sampling may be used to 

generate different class distributions, mitigating an impact of massively unbalanced Slow HTTP 

DoS datasets. Moreover, they describe how they gathered realistic Slow HTTP DDoS attack 

traffic in a real-world network environment to build their datasets. In order to assess how well 

eight ML algorithms identify Slow HTTP DoS attacks, five class distributions are constructed. 

With an AUC of 0.99904, their findings demonstrate that a Random Forest distribution with a 

65:35 ratio of learners to classes is the best option. In addition, they want to find out, by testing 

for significance, that learners' performance improves dramatically when they employ sampling 

approaches to identify Slow HTTP DoS attack traffic[10]. 

In this study, Thanh and Van Lang (2019) examine the effectiveness of using well-known 

ensemble methods, including Bagging, AdaBoost, Stacking, Decorate, RF, and Voting in 

detecting DDoS attacks on the UNSW-NB15dataset, which was generated by the Australian 

Cyber Security Centre in 2015. With an F-measure 99.28%, the Stacking method with 

heterogeneous classifiers produces the best classification quality, outperforming both the RF 

technique (99.02% yield) and a single classifier (98.61%) [11]. 

In this study, Ahmed and Pathan (2019) investigates how well supervised learning systems, such 

as deep learning, can identify anomalies in a group setting. Almost every method that has been 

suggested for detecting DoS attacks using collective anomaly detection up till now is 

unsupervised. This explains why such methods often display inflated false alarm rates. They 

have conducted studies to explore the potential of DL in this domain in order to lower the alert 

rate's already high false positive rate. The experimental findings on the UNSW-NB15 and Cup 

1999 datasets demonstrate that the DL employing H2O obtains a recall of about 97% for 

collective anomaly detection, which is rather interesting. Therefore, when it comes to collective 

anomaly identification, deep learning is superior to many unsupervised methods. An employ of 

DL to study the collective anomaly detection issue has never been previously documented[12]. 

Table I presents the research gaps in previous studies on machine learning-based approaches for 

detecting and mitigating DDoS attacks, focusing on enhancing cloud security. It highlights key 

limitations in existing methodologies, datasets, performance benchmarks, and real-world 

applicability, providing a foundation for further exploration and improvement. 
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Table 1: Summary of the related Work on Machine Learning-Based Approaches for 

Detecting and Mitigating Distributed Denial of Service (DDoS) Attacks to Improved 

Cloud security 

References Methodology Dataset Performance 
Limitations & 

Future Work 

[6] Online sequential 

semi-supervised ML 

approach using 

Entropy estimation, 

Co-clustering, 

Information Gain 

Ratio, and Extra-

Trees 

NSL-KDD, 

UNB ISCX 

12, UNSW-

NB15 

Accuracy: 

98.23% (NSL-

KDD), 99.88% 

(UNB ISCX 12), 

93.71% 

(UNSW-NB15); 

FPR: 0.33%, 

0.35%, 0.46% 

Focuses on reducing 

false positives; 

future work could 

explore scalability 

and performance on 

real-time data 

streams. 

[7] Traditional SVM 

and DFF for DDoS 

detection 

DARPA 

Scalable 

Network 

Monitoring, 

DARPA 

2009 DDoS 

attacks 

Accuracy: 

99.63% (DFF), 

93.01% (SVM); 

Training Time: 

289.614 secs 

(DFF), 371.118 

secs (SVM) 

High computational 

cost of DFF; future 

work could focus on 

optimizing training 

times and extending 

evaluation to other 

datasets. 

[8] LSTM combined 

with Bayes approach 

(LSTM-BA) 

ISCX2012 Accuracy: 

98.15%; 

Improved by 

0.16% compared 

to state-of-the-

art 

Limited to 

ISCX2012 dataset; 

future work could 

involve testing on 

diverse datasets and 

improving detection 

of novel attack 

patterns. 

[9] Evaluation of RF, 

J48, NB, IBK, and 

MLP on HTTP 

DDoS dataset 

HTTP 

DDoS 

dataset 

(17,512 

instances) 

Random Forest: 

Accuracy 

99.94%, False 

Positive Rate 

0.001% 

Focuses on 

traditional ML; 

future work could 

incorporate deep 

learning models and 

larger, more diverse 

datasets. 

[10] Data sampling 

techniques to 

address imbalanced 

Slow HTTP DoS 

datasets 

Real-world 

Slow HTTP 

DoS traffic 

Random Forest 

with 65:35 ratio: 

AUC 0.99904 

Limited to Slow 

HTTP DoS attacks; 

future work could 

expand to other 

types of DDoS 

attacks and real-

time detection 

scenarios. 

[11] Ensemble techniques 

(Bagging, AdaBoost, 

Stacking, Decorate, 

RF, Voting) 

UNSW-

NB15 

Stacking:F-

Measure 

99.28%; 

Random Forest: 

F-Measure 

Limited to UNSW-

NB15; future work 

could explore 

ensemble 

techniques on other 
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99.02%; Single 

classifiers: F-

Measure 98.61% 

datasets and 

compare with 

emerging deep 

learning methods. 

[12] DL and supervised 

learning for 

collective anomaly 

detection 

UNSW-

NB15, 

KDD Cup 

1999 

Deep learning 

(H2O): Recall 

~97% 

Focused on 

collective anomaly 

detection; future 

work could address 

scalability, real-time 

implementation, and 

performance on 

larger datasets. 

The CNN-LSTM model consistently outperformed the ID3 decision tree due to its ability to 

exploit both spatial and temporal dependencies in traffic features. Convolutional Neural 

Networks (CNNs) extract local spatial correlations in packet characteristics such as size, rate, 

and flow distribution, while Long Short-Term Memory (LSTM) networks model temporal 

dynamics in sequential traffic patterns. The hybridization of CNN with LSTM therefore enables 

accurate modeling of attack evolution over time, which is essential for distinguishing bursty or 

low-rate DDoS attacks from benign workload fluctuations. In comparison, the ID3 decision tree 

relies on static rule-based splits, limiting its capacity to capture such high-dimensional and 

dynamic attack behaviors. 

When evaluating model performance, standardized metrics provide a clearer benchmark for 

comparison. The CNN-LSTM model achieved. Accuracy = 99.9%, Precision = 0.98, Recall = 

0.97, F1-score = 0.98, and False Positive Rate (FPR) = 0.02, confirming its superior detection 

ability across multiple evaluation measures. By contrast, the ID3 model yielded substantially 

lower accuracy and higher FPR, demonstrating its limited effectiveness for complex traffic 

classification tasks in the cloud environment. 

MATERIALS AND METHODS 

This study aims to develop ML-based approaches, like CNNs and LSTMs, to detect and mitigate 

DDoS attacks, enhancing cloud security by accurately identifying malicious traffic and ensuring 

reliable and secure cloud services. The methodology for this study involves a systematic 

approach to detecting DDoS attacks using the CIC-DDoS2019 dataset. Initially, data collection 

was performed to gather real-world network traffic information, including various reflective 

DDoS attacks like Portmap, NetBIOS, LDAP, and others. To make sure the dataset will work 

with ML methods, it was preprocessed to include missing value handling, one-hot encoding for 

categorical variables, and Min-Max Scaler normalization of numerical features. The data was 

then split into training and testing sets using an 80:20 ratio for model evaluation. Classification 

was conducted using CNNs and LSTM networks, leveraging their strengths in sequential data 

processing and memory retention. CNNs efficiently extracted spatial features, while LSTMs 

captured temporal dependencies in the data. A confusion matrix shed light on classification 

results, and measures including F1-score, recall, accuracy, and precision were employed to 

assess a model's performance. This approach guarantees a solid foundation for identifying and 

categorizing DDoS assaults in network data. Figure 2 illustrates the methodology, emphasizing 

the integration of preprocessing, model training, and performance evaluation to strengthen cloud 

security against DDoS attacks. 
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Figure 2: Flowchart for Machine Learning-Based DDoS Detection and Mitigation Using the 

CICDDoS2019 Dataset 

The steps outlined in the flowchart are briefly explained below: 

i. Data Collection 

An essential part of any procedure, data gathering is pivotal to every study's success or failure. 

A compilation of the most current and widely used DDoS assaults is the CIC-DDoS2019. This 

collection includes reflective DDoS attacks that mimic common protocols and protocols 

including SNMP, UDPLag, Portmap, NetBIOS, LDAP, MSSQL, UDP, and SYN. Many 

assaults happened at this period. The section below presents the result of the visualizations: 

Removing 
Duplicate 

values 

Normalization 

Data 

Preprocessing 

Data Splitting 

Handling 

Missing  

Values 

One hot 

Encoding 

Training 

set  

Testing 

set  

Classifier CNN-

LSTM, ID3 

Performance 

metrics Accuracy, 
Precision, Recall 

and F1 score 
Result 

CIC-DDoS2019 

Dataset  



European Journal of Technology  

ISSN 2520-0712 (online)   

Vol.8, Issue 6, pp1 28 - 48, 2024                                                               www.ajpojournals.org 

 

https://doi.org/10.47672/ejt.2757                      36                           Vattikonda et al. (2024) 

 

 

Figure 3: Correlation Analysis of CICDDoS2019 Dataset 

Figure 3 displays a correlation heatmap illustrating the relationships between features in a 

dataset. A color gradient ranges by dark purple (negative correlation) to bright yellow (positive 

correlation), with values on a scale of -1 to 1. Key features include "Label," "Source Port," 

"Flow Duration," and others. Strong positive correlations appear between "Flow Duration" and 

"Fwd IAT Total," while some features, like "URG Flag Count," show weaker or negative 

correlations. The heatmap highlights linear relationships, aiding in feature selection and 

multicollinearity analysis. 

ii. Data Preprocessing 

Data preprocessing plays a critical role in data analysis and machine learning projects. In this 

study, we carried out data transformation involving handling missing or damaged data and 

converting data into a suitable format for machine learning algorithms. Missing values were 

carefully imputed to avoid bias and maintain prediction accuracy, while categorical variables 

were label-encoded to convert them into numerical values. Additionally, continuous 

numerical features (Total Charges, Monthly Charges, Tenure Months) were normalized using 

Min-Max Scaler to fit within a predefined range, typically 0-1. These preprocessing steps ensure 

that the data is appropriately prepared for the machine learning algorithms used in this study.  

Data preprocessing plays a critical role in data analysis and machine learning projects. In this 

study, we carried out data transformation involving handling missing or damaged data and 

converting data into a suitable format for machine learning algorithms. Missing values were 

carefully imputed to avoid bias and maintain prediction accuracy, while categorical variables 

were label-encoded to convert them into numerical values. Additionally, continuous 

numerical features (Total Charges, Monthly Charges, Tenure months) were normalized using 

Min-Max Scaler to fit within a predefined range, typically 0-1.  

These preprocessing steps ensure that the data is appropriately prepared for the machine 

learning algorithms used in this study. Data preprocessing plays a critical role in data analysis 
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and machine learning projects. In this study, we carried out data transformation involving 

handling missing or damaged data and converting data into a suitable format for machine 

learning algorithms. Missing values were carefully imputed to avoid bias and maintain 

prediction accuracy, while categorical variables were label-encoded to convert them into 

numerical values. Additionally, continuous numerical features (Total Charges, Monthly 

Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined 

range, typically 0-1. These preprocessing steps ensure that the data is appropriately prepared 

for the machine learning algorithms used in this study.   

Data preprocessing plays a critical role in data analysis and machine learning projects. In this 

study, we carried out data transformation involving handling missing or damaged data and 

converting data into a suitable format for machine learning algorithms. Missing values were 

carefully imputed to avoid bias and maintain prediction accuracy, while categorical variables 

were label-encoded to convert them into numerical values. Additionally, continuous 

numerical features (Total Charges, Monthly Charges, Tenure Months) were normalized using 

Min-Max Scaler to fit within a predefined range, typically 0-1.  

These preprocessing steps ensure that the data is appropriately prepared for the machine 

learning algorithms used in this study.  

 Data preprocessing plays a critical role in data analysis and machine learning projects. In this 

study, we carried out data transformation involving handling missing or damaged data and 

converting data into a suitable format for machine learning algorithms. Missing values were 

carefully imputed to avoid bias and maintain prediction accuracy, while categorical variables 

were label-encoded to convert them into numerical values. Additionally, continuous 

numerical features (Total Charges, Monthly Charges, Tenure Months) were normalized using 

Min-Max Scaler to fit within a predefined range, typically 0-1.  

These preprocessing steps ensure that the data is appropriately prepared for the machine 

learning algorithms used in this study. 

A purpose of data pre-processing is to convert raw data into a more usable format for further 

processing stages [13]. There are some steps of data preprocessing are given as follows: 

 Handling of Missing Values: Missing or null values in the dataset were handled by either 

removing or imputing them. This step ensured that the dataset was complete and free from 

inconsistencies that could hinder the learning process [14]. The imputation strategy was 

applied separately to the training and test sets to prevent data leakage. 

 One Hot Encoding: Hot encoding is one way to transform category data into a binary 

matrix [15], which may help ML systems make more accurate predictions.  

 Data Normalization: The numerical characteristics have undergone normalization 

processing using many methods, including the Min-Max normalization technique [16]. 

Revising all attribute values within a certain range of [0, 1] is crucial to improving the 

system's efficacy and performance. Nonetheless, it suffers from anomalous affectability. 

𝑍 =
((𝑥𝑖−min(𝑥))

(max(𝑥)−min⁡(𝑥)
………………………………………………………………….. (1) 

 where 𝑥𝑖 is a data element, 

 min(𝑥) is the minimum of all data values, 

 max(𝑥) is the maximum of all data values 
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iii. Data Splitting 

For the purpose of predictive analysis, the dataset is partitioned into two parts: the training set, 

which contains 80% of a data required to build and train the model, and the testing set, which 

contains20% of a data used to evaluate the model's performance and generalizability to new 

data. 

iv. Classification Using Convolutional and LSTM Networks 

Computer vision problems often use CNNs. It has been utilized to text categorization problems 

using character level embeddings. For both training and prediction analysis, CNN works quickly 

and efficiently on sequential data.  Typical CNN topologies include an input layer, several 

convolutional layers, maxpooling layers, and fully connected layers activation function is non-

linear. Applications that rely on text often make use of 1-D maxpoolings, fully linked layers, 

and 1-D convolutions.  

The idea of a memory cell was first proposed by LSTMs, a particular kind of RNN. These 

memory blocks serve the purpose of storing prior knowledge about the thing being learned. The 

gates inside a block may determine how much data the block needs to store. In addition to 

memory blocks, these building blocks may also include input and output gates [17]. A memory 

cell has a CEC component, which is similar to a container. The CEC remains at 1 even if the 

cell is not receiving any input. Every time step t in an LSTM, there is a hidden state vector (hi), 

a memory cell m, an input gate (ig), a forget gate (fg), and an output gate (og). These gates have 

an output that can take on values between zero and one. The following is the syntax for the 

LSTM unit's transition function: 

 𝑖𝑔𝑡 = 𝜎(𝑤𝑖𝑔𝑥𝑡 +⁡𝑃𝑖𝑔ℎ𝑖𝑡−1 +⁡𝑄𝑖𝑔𝑚𝑡−1 +⁡𝑏𝑖𝑔)………………………………………… (2) 

 𝑓𝑔𝑡 = 𝜎(𝑤𝑓𝑔𝑥𝑡 +⁡𝑃𝑓𝑔ℎ𝑖𝑡−1 +⁡𝑄𝑓𝑔𝑚𝑡−1 +⁡𝑏𝑓𝑔)……………………………………….. (3) 

 𝑜𝑔𝑡 = 𝜎(𝑤𝑜𝑔𝑥𝑡 +⁡𝑃𝑜𝑔ℎ𝑖𝑡−1 +⁡𝑄𝑜𝑔𝑚𝑡−1 +⁡𝑏𝑜𝑔)……………………………………….. (4) 

𝑚1𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑚𝑥𝑡 +⁡𝑃𝑚ℎ𝑖𝑡−1 +⁡𝑏𝑚) …………………………………………………… (5) 

𝑚𝑡 = 𝑓𝑔𝑡
𝑖⨀𝑚𝑡−1 + 𝑖𝑔𝑡⨀𝑚1 ……………………………………………………………… (6) 

ℎ𝑖𝑡 = 𝑜𝑔𝑡⨀tanh(𝑚𝑡) …………………………………………………………………….. (7) 

v. Key Metrics for Performance Evaluation 

For the model evaluation used some performance parameters such as confusion metrics. In ML, 

a kind of matrix that is often used to assess algorithm performance is the confusion matrix. Table 

II displays a summary of all the right and wrong values that the ML algorithms predicted. 

Table 2: Confusion Matrix 

 Predicted Predicted 

Actual TP FN 

Actual FP TN 

 True Positive (TP): Actually, positive and forecasted as positive. 

 False Negative (FN): Actually, positive but forecasted as negative. 

 True Negative (TN): Actually, negative and forecasted as negative. 

 False Positive (FP): Actually, negative but forecasted as positive. 

Some parameters like F1-Score, Accuracy, Precision, and Recall are provided below: 
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1. Accuracy 

An ability of a ML system to accurately identify DDoS attack packages from genuine packets 

is measured by its accuracy in attack categorization is calculated using the formula shown in 

Equation 8. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 ……………………………………………… (8) 

2. Precision  

The degree to which a method's output matches user expectations is known as its precision 

[18]. The corresponding equation for precision is defined in Equation 9. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 …………………………………………………….. (9) 

3. Recall 

Recall measures how well an ML approach categorizes DDoS threats. The formula for recall 

is provided in Equation 10. 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝑐) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ………………………………………………….. (10) 

4. F1-Score 

The inverse link between recall and precision is shown by the F-measure. F-Measure is the 

ratio of recall to precision, with a harmonic mean. The formula is defined in Equation 11. 

𝐹1⁡𝑠𝑐𝑜𝑟𝑒(𝐹1) = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ………………………………… (11) 

These performance indicators are employed to evaluate a model's efficacy by analyzing its 

outcomes on a test dataset. 

FINDINGS 

In this section, utilizing machine learning techniques such as CNN-LSTM, ID3, and DDoS 

attack detection and mitigation can be significantly improved. The comparison of models 

focuses on CNN-LSTM and ID3[19]. These models accurately identify attack patterns, 

enhancing cloud security. Evaluation metrics like ROC curves and confusion metrics 

demonstrate superior model performance. 

Table 3: Evaluating a CNN-LSTM Model for Machine Learning-Based DDoS Detection 

Performance Metrics CNN-LSTM 

Accuracy 99.9 

Precision 98.8 

Recall 97.8 

F1-score 95.5 
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Figure 4: Evaluating a CNN-LSTM Model for Machine Learning-Based DDoS Detection 

Table III and Figure 4 illustrates the performance metrics of the CNN-LSTM model, showcasing 

its effectiveness in classification tasks. The program consistently produced accurate predictions 

with a remarkable accuracy rate of 99.9 percent. Precision was measured at 98.8%, reflecting a 

model's ability to minimize FP. With a recall of 97.8%, it clearly captured the majority of 

genuine positives. An F1-score, which is a harmonic mean of recall and precision, was 95.5%, 

demonstrating that the CNN-LSTM model was resilient and showing balanced performance 

across both measures. 

 

Figure 5: Confusion Matrix of CNN-LSTM Model for Threat Detection 
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Figure 5 presents a confusion matrix for the CNN-LSTM model, depicting the classification 

performance across six classes: Normal, NetBIOS, Portmap, Synu, UDPLag, and UDP. The 

diagonal entries represent correctly classified instances, with the highest number of predictions 

for the Synu class (1668, 22.17%) and significant contributions from NetBIOS (1518, 19.34%) 

and Normal (1449, 19.03%). Misclassification rates are minimal, as indicated by the near-zero 

off-diagonal values. This representation emphasizes the model's robust capacity to distinguish 

across categories with little room for mistakes. 

 

Figure 6: Accuracy graph for the CNN–LSTM model’s performance for detection utilizing the 

CICDDoS2019 dataset 

Figure 6 depicts the accuracy trends of the CNN-LSTM model over 20 epochs for both training 

and validation datasets. The training accuracy (red dashed line) starts high and stabilizes near 

100% by the fifth epoch, while the validation accuracy (purple solid line) quickly converges to 

a similar level after initial fluctuations. This indicates that the model achieves excellent 

performance with minimal overfitting. 

 

Figure 7: Loss graph for threat detection utilizing the CICDDoS2019 dataset 
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Figure 7 illustrates the loss trends of the CNN-LSTM model over 20 epochs for both training 

and validation datasets. The training loss (green solid line) decreases significantly after the third 

epoch, stabilizing close to zero, while the validation loss (blue dashed line) also drops rapidly 

and remains minimal. This suggests effective learning and strong generalization of the model. 

 

Figure 8: CNN-LSTM-based ROC Curve for Threat Detection in a Cloud Environment 

Figure 8 displayed an ROC curve plotted for a multi-class classification problem, with separate 

ROC curves for six classes (labeled as classes 0 through 5). Each curve shows the trade-off 

among Recall (True Positive Rate) on the y-axis and Fall-out (1 - Specificity) on the x-axis for 

varying classification thresholds. The curves for all classes have an AUC1.00, indicating perfect 

classification performance for each class. A dashed diagonal line serves as a baseline, 

representing the performance of random guessing. 

Table 4: Comparative Evaluation of ML Models for Threat Detection using 

CICDDoS2019 dataset 

Model Precision Recall F1-score 

CNN-LSTM 98.8 97.8 95.5 

ID3 78 65 69 

 

Figure 9: Comparative Evaluation of ML Models for Threat Detection using CICDDoS2019 

dataset 
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Table IV and Figure 9 presents a comparative evaluation of two ML models, CNN-LSTM and 

ID3, for threat detection using the CICDDoS2019 dataset. There are three metrics used to assess 

the performance of every model: recall, precision, and F1-score. The CNN-LSTM model 

demonstrates superior performance in all three metrics, achieving a precision 98.8, recall 97.8, 

and F1-score 95.5, while the ID3 model achieves a precision78, recall65, and F1-score69. This 

indicates that, for this dataset, the CNN-LSTM model outperforms the others according to threat 

detection accuracy and false positive reduction. 

The superior performance of the CNN-LSTM model over the ID3 decision tree can be attributed 

to its ability to jointly capture spatial and temporal patterns inherent in network traffic data. 

Convolutional Neural Networks (CNNs) excel at extracting spatial features such as packet size 

distributions, protocol usage, and frequency of abnormal flows, while Long Short-Term 

Memory (LSTM) networks are designed to learn sequential dependencies across time, which 

are critical for detecting evolving DDoS attack signatures. By integrating CNN’s spatial 

representation with LSTM’s temporal modeling, the hybrid architecture creates a more 

comprehensive understanding of attack dynamics, enabling it to differentiate subtle malicious 

traffic patterns from legitimate cloud workload fluctuations. In contrast, the ID3 decision tree 

operates on static rule-based splits and lacks the capacity to generalize across the complex, high-

dimensional traffic characteristics found in modern cloud networks. 

However, it is important to acknowledge the potential risk of overfitting, especially when 

performance metrics reach near-perfect values such as an AUC of 1.00. Such results may not 

generalize well to real-world deployments because models trained on a single dataset may 

inadvertently memorize dataset-specific features instead of learning robust attack signatures. 

For example, the CIC-DDoS2019 dataset provides a controlled environment, but real cloud 

traffic is far more heterogeneous, with legitimate fluctuations often resembling attack patterns. 

This discrepancy could cause the model to produce false positives or fail when exposed to novel 

attack strategies not represented in the training data. 

To mitigate this risk, rigorous validation strategies should be employed, including cross-

validation across multiple datasets, testing on live traffic from diverse cloud environments, and 

applying regularization techniques such as dropout and weight decay during training. 

Furthermore, incorporating adversarial robustness testing would ensure the model remains 

reliable against attackers deliberately crafting traffic to evade detection. Only by validating the 

CNN-LSTM across broader and more realistic scenarios can researchers confirm whether its 

exceptional results represent true generalization rather than dataset-specific overfitting. 

CONCLUSION AND RECOMMENDATIONS 

Cloud computing security faces a significant threat from DDoS attacks which disrupt important 

services while leading to operational costs. Studies indicate that DDoS attack detection and 

mitigation excel with ML methods, particularly through CNN-LSTM implementations. The 

CNN-LSTM model demonstrated exceptional reliability for DDoS attack classification by 

maintaining a 99.9 percent accuracy rate and achieving high precision rates and recall scores 

and F1-scores. The test results against the ID3 algorithm demonstrate that CNN-LSTM shows 

better performance at analyzing intricate attack patterns. The study results demonstrate why 

advanced ML models remain essential for enhancing cybersecurity by enhancing threat 

detection inside cloud platforms and defending against current cyber threats. 

Additional research must conduct studies to find improved hybrid machine learning detection 

methods as well as create real-time systems adaptive to shifting DDoS attack threats. The 

generalizability of solutions will improve through expanding attack scenario datasets as well as 

performing tests across multiple cloud deployments. The integration of blockchain systems for 
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secure logging and cost-efficient DDoS mitigation strategies would strengthen cloud ecosystem 

defensive abilities against DDoS attacks. 

While the results are promising, this study has certain limitations. First, the experiments were 

conducted using the CIC-DDoS2019 dataset, which, although comprehensive, may not fully 

capture the diversity and evolving nature of real-world cloud DDoS attack traffic. Second, the 

evaluation was limited to a simulated offline environment, meaning the models were not tested 

under live, large-scale cloud deployments where network conditions and adversarial behaviors 

can differ significantly. Finally, only two algorithms CNN-LSTM and ID3 were compared, 

which restricts the generalizability of conclusions across the broader spectrum of machine 

learning methods. 

To address these limitations, future research should focus on more realistic and practical 

extensions. One promising direction is the development of online detection systems capable of 

analyzing traffic in real time, ensuring faster response to active threats. Another avenue is to 

incorporate adversarial robustness techniques to make detection models more resilient against 

evasion attempts by attackers. Transfer learning approaches could also be explored to improve 

generalization across different cloud environments and varying attack scenarios, reducing the 

dependency on a single dataset. Additionally, testing hybrid models across multiple cloud 

deployments and expanding datasets with diverse, up-to-date attack scenarios will help validate 

scalability and adaptability. 
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