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Abstract 

Purpose: To investigate whether access to 

agricultural support and the choice of adaptive 

strategy influence smallholder farmers' on-

farm and off-farm behavioural responses to 

extreme drought exposure. 

Materials and Methods: Using a large 

nationally representative rural household-level 

panel dataset, the study employs a matched 

Correlated Random Effects (CRE) tobit model 

to exploit regional variations in drought 

exposure conditions.  

Findings: Relative to the counterfactual group, 

the results show that beneficiaries of fertilizer-

seed support and agricultural credit respond to 

severe drought stresses by improving crop 

portfolio management strategies. Further, the 

results also reveal that recipients of fertilizer-

seed support expand croplands, seed 

consumption, and fertilizer utilization in 

response to extreme drought conditions while 

access to agricultural credit contributes to 

higher off-farm incomes and hence promotes 

occupational diversity in treatment farm 

households. Collectively, this points to the 

instrumental role of agricultural support in 

influencing the margin of adjustment in a way 

that strengthens the adaptive capacity of poor 

treatment farm households to climatic 

variability and change. However, for the large 

part, the choice of adaptive strategy appears to 

induce the opposite effects, with drought 

exposed adopters not only shifting towards 

more specialized cropping systems but also 

reducing hectarage shares, agricultural inputs, 

and off-farm incomes. Together, this is an 

indication that treatment adopters are relatively 

more vulnerable to future extreme moisture 

stress conditions, mainly cultivate improved 

localized staple crops, fortify agricultural 

investments on smaller manageable croplands, 

reallocate labour away from off-farm income 

enterprises towards own-farm activities, and 

are unlikely to increase seed and fertilizer 

uptake alongside adaptive land investments 

that are not suitable to localized weather 

conditions. The estimated results are robust to 

alternative estimation strategies, sample size 

adjustments, and alternate dataset. 

Unique Contribution to Theory, Practice 

and Policy: Based on the results of this study, 

agricultural policy should be localized and 

targeted to be effective. Support programs, 

particularly fertilizer-seed support, credit 

access, and extension services, must be 

designed to reflect regional agroclimatic 

conditions to strengthen farmers’ resilience. 

Specifically, policies should prioritize 

providing accessible finance and technical 

guidance to encourage climate-smart 

agricultural investments that are suitable to 

local weather patterns. By doing so, 

policymakers can help smallholders adopt 

adaptive behaviours that reduce vulnerability 

and enhance long-term climate resilience. 

Keywords: Drought Exposure, Crop 

Diversification, Cropland Adjustment, 

Fertilizer and Seed Uptake, Off-Farm Income, 

Zambia 

JEL Classifications: Q12, Q15, Q54, J31 

https://orcid.org/
https://doi.org/10.47672/aje.2847


American Journal of Economies      

ISSN 2520 - 0453 (Online)   

Vol. 10, Issue 1, pp 1 - 51, 2026                                                             www.ajpojournals.org  

                                                                                                                                                                        

https://doi.org/10.47672/aje.2847                           2                                            Tounkara (2026) 

 

1.0 INTRODUCTION  

There is substantial suggestive evidence showing that the ripple adverse social and economic 

costs of climatic variability and change are far-reaching (Burke & Emerick, 2016; Chen & 

Gong, 2021; Colmer, 2021; Di Falco et al., 2012; IPCC, 2022; Ortiz-Bobea et al., 2021). Rural 

farm households located in developing countries are relatively more exposed to climate shocks 

largely because agricultural production is characterized by low land productivity and punitive 

weather conditions (Aragón et al., 2021; Di Falco et al., 2011). Besides this, small-scale farmers 

in resource-constrained settings are particularly vulnerable because they lack both the adaptive 

capacity and technology to respond to climate change (IPCC, 2014, 2022), and the recent 

devastating yield impacts of climatic hazards is a manifestation of their vulnerability to weather 

anomalies (Di Falco et al., 2012; Eggen et al., 2019; Gröger & Zylberberg, 2016; McCarthy et 

al., 2021; Parida & Chowdhury, 2021). Therefore, unless sufficient adaptation and risk-coping 

strategies are adopted, food insecurity will continue to be endemic especially in Southern 

Africa and South Asia (Asfaw et al., 2016; IPCC, 2014, 2022; Lobell et al., 2008). This 

imminent food security threat posed by climate variability has led to increased calls for 

smallholder farmers and other economic agents to boost their adaptive capacity to attenuate the 

extent of economic damage (Branco & Féres, 2021; Burke & Emerick, 2016; McCord et al., 

2015; Piedra-Bonilla et al., 2020; Skoufias et al., 2017).  

However, an exclusive focus on the yield impacts of climate variability may not show the full 

extent of the vulnerability of agricultural output to adverse weather anomalies (Cohn et al., 

2016). Moreover, the inability of damage functions to capture behavioural responses to climate 

change results in biased yield loss estimates and provides an incomplete picture of rural farm 

households’ vulnerability and/or adaptive capacity (Aragón et al., 2021; Cui, 2020a). This is 

largely because weather-induced agricultural production losses may stem not only from 

reduced agricultural yields but also triggered behavioural responses such as cropland 

adjustments, crop abandonment, and changes in cropping frequency and input mix (Aragón et 

al., 2021; Benhin, 2006; Cohn et al., 2016; Cui, 2020a; Iizumi & Ramankutty, 2015). There is 

empirical support to this effect, with estimates showing that approximately 70% of changes in 

agricultural output caused by climate change originates from changes in cropland area and 

cropping frequency (Cohn et al., 2016). Therefore, understanding the impacts of climatic 

variability on the behavioural components of agricultural production and off-farm income 

enterprises provides critical insights into the potential adaptive capacity of farm households. 

Across developing countries, rural smallholder farmers attempt to hedge against adverse 

climate stressors using a variety of micro-level on-farm and off-farm responses because the 

pervasiveness of incomplete and/or missing insurance markets coupled with market failures 

makes it difficult to transfer the climate risk to third parties (Bezabih & Sarr, 2012; McCord et 

al., 2015; Mulwa & Visser, 2020; Piedra-Bonilla et al., 2020). Despite factors such as risk-

aversion and tenure security affecting climate adaptation, the prevailing evidence largely show 

that smallholder farmers adopt polyculture agricultural systems to minimize climate-related 

crop production risks (Arslan et al., 2018; Asfaw et al., 2019; Auffhammer & Carleton, 2018; 

Bezabih & Sarr, 2012; Birthal & Hazrana, 2019; Huang et al., 2014; McCord et al., 2015; 

Mulwa & Visser, 2020; Piedra-Bonilla et al., 2020). However, other studies show that adverse 

weather conditions incentivize monoculture agricultural practices that perpetuate the 

cultivation of low-value crops (Bradshaw et al., 2004; Cohn et al., 2016; Di Falco et al., 2010; 

Ochieng et al., 2020; Sesmero et al., 2018). Relatedly, rural farm households either expand 

croplands (Aragón et al., 2021; Cho & McCarl, 2017; Cui, 2020b) or shrink acreage shares 

(Benhin, 2006; Cohn et al., 2016; Cui, 2020a) in response to the undesirable effects of extreme 

weather stressors. Additionally, while some households reduce consumption of agricultural 
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inputs (Chen & Gong, 2021; Sesmero et al., 2018), others respond to changing climatic 

conditions by cultivating early maturing seed varieties and suitable localized crops, increasing 

fertilizer usage, and staggering planting, weeding and harvesting dates (Amare & Simane, 

2017; Below et al., 2010; Benhin, 2006; Bryan et al., 2013; Di Falco et al., 2011). Besides, 

smallholder farmers respond to recurrent severe weather stressors by undertaking adaptive land 

investments such as agroforestry, crop rotation, and legume-intercropping to strengthen, among 

others, soil fertility and agricultural productivity (Below et al., 2010; Benhin, 2006; Bryan et 

al., 2013; Deressa et al., 2009; Gbetibouo et al., 2010; Karanja Ng’ang’a et al., 2016).  

Further, small-scale farmers also adjust livestock management practices by adopting drought 

and heat tolerant livestock breeds to moderate the impacts of global warming (Below et al., 

2010; Benhin, 2006; Gbetibouo et al., 2010; Mulwa & Visser, 2020). In addition, alterations to 

farm households’ occupational diversity are not uncommon behavioural responses to climate-

related risks. Specifically, extreme weather conditions contribute to labour diversification and 

higher off-farm incomes (Arslan et al., 2018; Asfaw et al., 2018; Branco & Féres, 2021; 

Skoufias et al., 2017). Although off-farm work reduces weather-induced income variability and 

the need to depend on savings to smooth household consumption (Kochar, 1999), the evidence 

also shows that weather anomalies contribute to job redundancies, lower wages, and labour 

reallocation towards own-farm cropping activities at the expense of other remunerative off-

farm income enterprises (Banerjee, 2007; Chen & Gong, 2021; Jessoe et al., 2018; Mueller & 

Quisumbing, 2011; Njuki, 2021; Parida & Chowdhury, 2021; Sesmero et al., 2018). 

Furthermore, households with limited coping mechanisms either reallocate labour across 

industries or migrate to other less affected regions so that migration, through migrant 

remittances and additional incomes, serves as an effective shock-copping instrument against 

severe weather shocks (Cattaneo & Peri, 2016; Colmer, 2021; Dercon, 2002; Feng et al., 2010; 

Feng et al., 2012; Gray & Mueller, 2012; Gröger & Zylberberg, 2016; Jessoe et al., 2018; 

Marchiori et al., 2012). Additionally, government interventions that provide relief support 

through, among others, input subsidies and transfers, attempt to not only offset the impacts and 

risks of climate-related shocks but also influence behavioural responses in a way that improves 

farm households’ adaptive capacity to climatic variability (Below et al., 2010; Berhane et al., 

2014; Halsnæs & Trærup, 2009; McLeman et al., 2008; Pan, 2009).  

1.1 Problem Statement  

The 2015/2016 El Niño drought-induced shock severely affected large parts of Zambia. In 

particular, Figure 1 below shows that the 2015/2016 El Niño droughts mostly affected regions 

located in the southern half of Zambia. The main objective of this study is to exploit this unique 

natural experiment to compare on-farm and off-farm behavioural responses between treatment 

groups. Despite the growing evidence-base, empirical studies thus far especially from Sub-

Saharan Africa (SSA) do not provide comparative insights into the effectiveness of agricultural 

policy in influencing on-farm and off-farm margin of adjustments to severe weather conditions. 

This notwithstanding, I contribute to the literature in at least two main ways:  

Firstly, there is a shortage of studies exploiting regional differences in drought exposure 

conditions to explore whether access to agricultural support and the choice of adaptive strategy 

influence on-farm and off-farm behavioural responses of drought-exposed households 

differently vis-à-vis the counterfactual group. Current studies largely ignore localized 

variations in weather characteristics that affect the effectiveness of agricultural policy in 

influencing smallholder farmers’ behavioural margin of adjustments. Therefore, by adopting a 

matched panel Correlated Random Effects (CRE) estimation strategy to compare behavioural 

responses between treatment groups, I significantly distinguish this research from previous 
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studies. Besides, this study further differentiates itself by comparing on-farm and off-farm 

behavioural responses of treatment groups both before and after drought exposure to obtain 

autonomous adaptation insights.  

Secondly, unlike previous research, I incorporate matching methods into a panel data 

estimation framework to generate robust and reliable causal estimates since a matched panel 

estimation strategy compares observationally similar treatment groups whilst controlling for 

unobserved heterogeneity. Moreover, I use high-resolution gridded satellite precipitation data 

to calculate unbiassed rainfall shock identifiers and validate the drought exposure status of 

treatment households. 

 

Figure 1: Severely Drought Exposed Areas 

The rest of the paper is structured as follows: Section 2 presents the study’s theoretical 

framework; Section 3 describes the data while Section 4 outlines the methodology; Section 5 

reports and discusses the results and robustness checks before providing a conclusion in Section 

6. 

2.0 THEORETICAL FRAMEWORK  

Across developing countries, incomplete markets are pervasive and largely characterize the 

environment in which smallholder farmers operate. The simple theoretical agricultural model 

derived in this section is primarily informed by the works of De Janvry et al. (1991), Benjamin 

(1992), and Taylor and Adelman (2003) who modelled and conceptualized the behaviour of 

peasant households in terms of utility and profit maximization under imperfect market 

conditions where the corresponding household commodities are rendered non-tradable. This 

entails that the presence of market failures in the goods and factor markets constrains 

households from responding optimally to price incentives and/or shocks, but instead pushes 

households to shift the burden of adjustment onto non-tradable inputs (e.g. labour) and 
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consumption that are within the control of households (De Janvry et al., 1991). Besides, 

smallholder farmers’ consumption and production decisions are interdependent because 

households are both producers and consumers of goods in settings characterized by missing 

and/or incomplete markets. Thus, unlike in standard consumer models where the household 

budget is fixed, the farm household budget in agricultural models is endogenous because 

household incomes are a function of profits – which are influenced by, among others, 

production decisions (Taylor & Adelman, 2003). 

To illustrate the simple model, let’s consider a representative rural farm household 𝑖 producing 

only one commodity 𝑞𝑖𝑡 at time 𝑡  and deriving utility from consuming the commodity 𝐶𝑖𝑡 and 

leisure 𝑙𝑖𝑡 given by the following quasi-concave utility function  𝑈𝑖𝑡 = 𝑈(𝐶𝑖𝑡, 𝑙𝑖𝑡: 𝑍𝑖𝑡), where 

𝑍𝑖𝑡 is a vector of exogenous household characteristics such as household size, age, and sex that 

affect overall household utility. Furthermore, for illustration purposes, let’s also assume that 

the production technology employed by the farm household 𝑖 is given by the following quasi-

concave production function  𝑞𝑖𝑡 = 𝑓(𝐴𝑖𝑡, 𝐿𝑖𝑡 , 𝐾̅𝑖𝑡, 𝑆𝑖𝑡), where 𝐴𝑖𝑡 captures crop diversification 

and other related crop management strategies,  𝐿𝑖𝑡 represents total farm labour supply (and any 

other variable input employed in production such as fertilizer) and constitutes family labour 

𝐿𝑖𝑡
𝐹  and hired 𝐿𝑖𝑡

𝐻  labour given by 𝐿𝑖𝑡 = 𝐿𝑖𝑡
𝐹 + 𝐿𝑖𝑡

𝐻 , 𝐾̅𝑖𝑡 denotes capital that is assumed to be fixed 

in the short-run, and 𝑆𝑖𝑡 captures agricultural support variables such as fertilizer-seed support 

and agricultural credit that are largely assumed to be fixed at the start of the growing season. 

Besides, I consider 𝑆𝑖𝑡 to serve not only as a shift factor but also to broadly capture various 

attributes influencing the adoption of conservation agricultural techniques, soil quality, and 

farming skills that allow the employment of identical agricultural inputs such as labour to yield 

different outputs. Additionally, I also assume that the farm household 𝑖 has an exogenous 

income and total time endowment of 𝑦 and 𝑇𝑖𝑡(𝑍𝑖𝑡) respectively at its disposal, and that the 

household can supply 𝐿𝑖𝑡
𝑂  as off-farm labour. Therefore, the farm household divides its time 

between leisure (𝑙𝑖𝑡), working on the farm (𝐿𝑖𝑡
𝐹 ), and working off-farm (𝐿𝑖𝑡

𝑂 ) as shown in the 

following linear expression 𝑇𝑖𝑡(𝑍𝑖𝑡) = 𝑙𝑖𝑡 + 𝐿𝑖𝑡
𝐹 + 𝐿𝑖𝑡

𝑂 . 

Following studies such as Jessoe et al. (2018), Behrer and Park (2017) and Aragón et al. (2021) 

coupled with overwhelming empirical support showing that extreme weather stressors induce  

unfavourable impacts on agricultural output, labour productivity, and labour supply (Burke & 

Emerick, 2016; Chen & Gong, 2021; Colmer, 2021; Njuki, 2021; Ortiz-Bobea et al., 2021; 

Schlenker & Roberts, 2009; Wang et al., 2021), I allow growing weather conditions (𝑊) to 

affect agricultural production (𝑞𝑖𝑡) through its impact on attributes of crop management 

strategies (𝐴𝑖𝑡) and farm labour supply (𝐿𝑖𝑡) as shown in the following re-specified quasi-

concave production function 𝑞𝑖𝑡 = 𝑓(𝐴𝑖𝑡(𝑊), 𝐿𝑖𝑡(𝑊), 𝐾̅𝑖𝑡, 𝑆𝑖𝑡), where 𝑊 is the realized 

weather at the location of the smallholder farmer – with moderately higher values of 𝑊 

representing favourable growing weather conditions. Besides this, I also make the assumption 

that (i) agricultural labour supply and weather conditions are complements; (ii) smallholder 

farmers are mostly price takers; and (iii) that the cost of hiring labour is equivalent to the wage 

accrued from off-farm work (𝑤) (Benjamin, 1992; De Janvry et al., 1991; Jessoe et al., 2018).  

Therefore, assuming the existence of well-functioning labour markets, the farm household 

maximizes utility subject to the total income constraint as follows: 

         𝑀𝑎𝑥 𝑈(𝐶𝑖𝑡, 𝑙𝑖𝑡: 𝑍𝑖𝑡) … … … … … … … … … … … … … … … . . … … … … … … … … … . . 1                                                                                                         

        𝑠. 𝑡.   𝐶𝑖𝑡 = 𝑃𝑐𝑓(𝐴𝑖𝑡(𝑊), 𝐿𝑖𝑡(𝑊), 𝐾̅𝑖𝑡, 𝑆𝑖𝑡) − 𝑤𝐿𝑖𝑡
𝐻 (𝑊) + 𝑤𝐿𝑖𝑡

𝑂 (𝑊) + 𝑦 … … … . .2  

Allowing for the influence of weather conditions, the total time endowment and farm labour 

supply functions can be re-written as follows:   
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      𝑇𝑖𝑡(𝑍𝑖𝑡) = 𝑙𝑖𝑡(𝑊) + 𝐿𝑖𝑡
𝐹 (𝑊) + 𝐿𝑖𝑡

𝑂 (𝑊) … … … … … … … … … … … … … … … … … …  3 

      𝐿𝑖𝑡(𝑊) = 𝐿𝑖𝑡
𝐹 (𝑊) + 𝐿𝑖𝑡

𝐻 (𝑊) … … … … … … … … … … … … … … … … … … … … … … . . 4 

Using equation (3) and (4) to make 𝐿𝑖𝑡
𝑂 (𝑊) and 𝐿𝑖𝑡

𝐻 (𝑊) respectively the subject of the 

formula as shown below in equations (5) and (6), and then substituting these expressions into 

equation (2) alongside the competitive market equilibrium condition 𝑃𝑐 = 𝑃, where 𝑃𝑐 is the 

price of the agricultural produce, we obtain the simplified expression shown below in equation 

(7): 

𝐿𝑖𝑡
𝑂 (𝑊) = 𝑇𝑖𝑡(𝑍𝑖𝑡) − 𝑙𝑖𝑡(𝑊) − 𝐿𝑖𝑡

𝐹 (𝑊) … … … … … … … … … … … … … … … … … … … . . 5 

𝐿𝑖𝑡
𝐻 (𝑊) = 𝐿𝑖𝑡(𝑊) − 𝐿𝑖𝑡

𝐹 (𝑊) … … … … … … … … … … … … … … … … … … … … … … … . .  6 

𝐶𝑖𝑡 + 𝑤𝑙𝑖𝑡(𝑊) = 𝑃𝑓(𝐴𝑖𝑡(𝑊), 𝐿𝑖𝑡(𝑊), 𝐾̅𝑖𝑡, 𝑆𝑖𝑡) − 𝑤𝐿𝑖𝑡(𝑊) + 𝑤𝑇𝑖𝑡(𝑍𝑖𝑡) + 𝑦 … . … …  7                           

The right hand side of equation (7) is simply the total farm household income, which is 

a function of farm households’ profits 𝜋𝑖𝑡(𝑤, 𝑃, 𝑊, 𝐾̅𝑖𝑡, 𝑆𝑖𝑡) = 𝑃𝑓(𝐴𝑖𝑡(𝑊), 𝐿𝑖𝑡(𝑊), 𝐾̅𝑖𝑡, 𝑆𝑖𝑡) −
𝑤𝐿𝑖𝑡(𝑊), the value of the total time endowment [𝑤𝑇𝑖𝑡(𝑍𝑖𝑡)], and farm households’ cash 

endowment (𝑦). By letting  𝑌∗ represent the total household income, equation (7) can be re-

written as follows:   

𝐶𝑖𝑡 + 𝑤𝑙𝑖𝑡(𝑊) = 𝑌∗ … … … … … … … … … … … … … … … … … … … … … … … . . 8 

Maximizing the utility function 𝑈𝑖𝑡 = 𝑈(𝐶𝑖𝑡, 𝑙𝑖𝑡: 𝑍𝑖𝑡) in equation (1) subject to the total 

household income constraint represented in equation (8), and then solving the first order 

conditions yields the following household demand functions:  

𝐶𝑖𝑡
∗ = 𝐶(𝑌∗, 𝑤, 𝑊) = 𝐶(𝑃, 𝑤, 𝑊, 𝐾̅𝑖𝑡, 𝑆𝑖𝑡) … … … … … … … … … … … … … …  9 

𝑙𝑖𝑡
∗ = 𝑙(𝑌∗, 𝑤, 𝑊) = 𝑙(𝑃, 𝑤, 𝑊, 𝐾̅𝑖𝑡, 𝑆𝑖𝑡) … … … … … … … … … … … … … … …  10 

Similarly, optimizing the household profit function and solving the first order 

conditions results in the following input demand functions: 

𝐴𝑖𝑡
∗ = 𝐴(𝑃, 𝑤, 𝑊, 𝐾̅𝑖𝑡, 𝑆𝑖𝑡) … … … … … … … … … … … … … … … … … … … … …  11 

𝐿𝑖𝑡
∗ = 𝐿(𝑃, 𝑤, 𝑊, 𝐾̅𝑖𝑡, 𝑆𝑖𝑡) … … … … … … … … … … … … … … … … … … … … … . 12 

Based on equations (11) and (12) above, we can observe that weather conditions (W) and 

agricultural support (𝑆𝑖𝑡) directly influence on-farm behavioural margin of adjustments. 

Notwithstanding the overwhelming empirical support showing that adverse climatic variability 

harms crop production and labour market conditions – and informed by the implications of 

equations (5) and (6) –, I hypothesize that farm households respond to extreme weather events 

by laying off hired labour, devoting more family labour hours towards own-farm cropping 

activities, and shifting towards specialized, locally-adapted staple-crop systems to ensure food 

security. Additionally, equations (11) and (12) suggest that expansionary agricultural policies 

that enhance fertilizer-seed support, agricultural credit, and agricultural extension services can 

incentivize smallholder farmers located in regions predisposed to severe weather conditions to 

improve both crop management strategies and uptake of suitable agricultural inputs.  

Formally, the first- and second-order conditions of the input demand functions support these 

expectations. Within the derived model, equations (13) and (14) below indicate that extreme 

weather reduces crop diversity and leads to labour layoffs. In contrast, equations (15) and (16) 

suggest that recipients of agricultural support mitigate these impacts by improving crop 

diversification and farm labour supply respectively in response to climate variability. 
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𝜕𝐴𝑖𝑡
∗

𝜕𝑊
 < 0   … … … … … … … … … … … … … … … … … … … … .13  

𝜕𝐿𝑖𝑡
∗

𝜕𝑊
 < 0    … … … … … … … … … … … … … … … … … … … … .  14  

𝜕2𝐴𝑖𝑡
∗

𝜕𝑊𝜕𝑆
 > 0   … … … … … … … … … … … … … … … … … … …   15 

𝜕2𝐿𝑖𝑡
∗

𝜕𝑊𝜕𝑆
 > 0  … … … … … … … … … … … … … … … … … … … … .  16 

Therefore, on the basis of all the above derived expressions, I postulate the following testable 

hypotheses:  

Hypothesis 1: Adverse drought conditions stimulate monoculture agricultural practices. This 

hypothesis is drawn directly from the first-order derivative in equation (13), which indicates 

that a low crop diversification value signifies a shift toward monoculture or more specialized 

cropping systems.  

Hypothesis 2: Severe aridity conditions contribute to cropland expansion and increased 

utilization of productivity-enhancing inputs such as improved seed varieties and inorganic 

fertilizers. This hypothesis builds indirectly on Hypothesis 1 by suggesting that specialization 

in low-value crops increases the use of inputs such as drought-resistant seeds to raise 

productivity. Accordingly, I propose that risk-averse smallholders – particularly in areas with 

imperfect labour markets and food-insecurity concerns – respond to extreme drought by 

expanding land use shares and boosting input application to mitigate losses in crop yields and 

household consumption. 

Hypothesis 3: Extreme weather conditions such as droughts lower off-farm incomes and 

occupational diversity. This hypothesis, informed by equations (5), (6), (9), (10), and (14), is 

consistent with the first hypothesis. It posits that an increase in family labour supply reduces 

off-farm labour and income (equation 5 and 6). This income decline lowers demand for both 

agricultural and non-agricultural goods, reducing consumption and leisure activity (equation 9 

and 10). In response, farm and non-farm sectors lay off workers, further depressing off-farm 

income. Concurrently, under extreme weather, net farm labour supply decreases because 

layoffs of hired labour exceed any rise in family labour supply (equation 14). 

Hypothesis 4: Beneficiaries of agricultural support in drought-hit areas diversify crop 

portfolio management strategies, expand hectarage shares, boost agricultural inputs uptake, 

and earn lower off-farm incomes. This hypothesis is derived from the second-order derivatives 

in equations (15) and (16), with equation (16) also indirectly relating to equations (5) and (6). 

Specifically, equation (15) indicates that recipients of agricultural support adopt polyculture 

systems in response to drought, positively influencing cropland expansion and input use. 

Equation (16) shows that these beneficiaries also reallocate labor from off-farm activities to 

their own farms, which reduces off-farm income and limits occupational diversity. 

Hypothesis 5: The choice of adaptive strategy constrains crop diversity, cropland shares and 

input utilization, and further contributes to lower off-farm incomes in drought-hit regions. 

This hypothesis follows indirectly from Hypothesis 4, as agricultural support – often delivered 

through extension services – shapes the choice of adaptive land investments. I propose that 

drought-affected farmers with limited resources, for whom implementing suitable land 

strategies across large, diverse croplands is costly and time-intensive, are likely to concentrate 

labour on smaller, manageable plots of low-value crops to ensure basic food security. 
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Consequently, this reduces the use of productivity-enhancing inputs, depresses off-farm 

income, and limits occupational diversity. 

3.0 DATA DESCRIPTION AND ANALYSIS  

3.1 Data Description  

This study combines a large three-wave rural household-level dataset with geocoded satellite 

rainfall data to form a unique panel dataset. The nationally representative rural household-level 

dataset comes from the Rural Agricultural Livelihoods Survey (RALS) which is conducted 

every three years since 2012. RALSs collects and reports various agricultural and non-

agricultural information related to, among others, cropland shares, cultivated crops and seed 

types, quantities of basal and top-dressing fertilizer used, and off-farm income enterprises. 

Thus, the uniqueness of RALS lies in its comprehensiveness and national coverage, with the 

2012 RALS utilizing the 2010 national census as its sampling frame. So far, a total of 7,241 

rural agricultural farm households were re-interviewed in the latest 2019 RALS. Given that the 

2015/2016 El Niño weather event triggered regional variations in aridity conditions and 

severely affected areas mostly situated in the southern parts of Zambia, I follow Alfani et al. 

(2021) and adopt the same treatment definition of extreme drought exposure used in the 2016 

vulnerability and needs assessment report to categorize severely affected farm households 

(ZVAC, 2016). This, in turn, partitions the 2015 RALS dataset into two separate groups, 

namely, treatment and counterfactual group households. Thereafter, I track these farm 

households back to the 2012 RALS and forward in the 2019 RALS to form a unique panel 

dataset of treated and untreated farm households. On the other hand, I obtain the geocoded 

satellite rainfall data from the Climate Hazards Group InfraRed Precipitation with Station data 

(CHIRPS). CHIRPS collects daily precipitation data with a grid spatial resolution of 0.05° by 

0.05° as far back as 1981 (Funk et al., 2015).  

To combine the two respective georeferenced datasets, I use the nearest neighbour approach 

that links each farm household in the household-level dataset to the nearest gridded 

precipitation data point (Ndhlovu & Muchapondwa, 2020; Picard, 2019). Furthermore, 

following studies such as Larcom et al. (2019) and Alfani et al. (2021), satellite precipitation 

data is used to calculate rainfall shock identifiers at the location of the smallholder farmer in 

order to objectively establish drought exposure and validate the treatment status of farm 

households located in areas that were identified to be extremely affected by the 2015/2016 El 

Niño drought shock. This secondary validation is vital because it ensures that only households 

that experienced severe aridity conditions induced by the El Niño drought shock are included 

in the treatment sample. Therefore, to calculate objective rainfall shock identifiers over the 

2015/2016 growing season – i.e., October to March, I use the following standardized deviation 

measure: 

                   𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙_𝐴𝑛𝑜𝑚𝑎𝑙𝑙𝑦𝑖𝑡 =
𝑅𝑖𝑡 − 𝑅̅𝑖𝑡

𝜎𝑠𝑑
… … … … … … … … … … … … … … … … … … …  1 

where 𝑅𝑖𝑡 is the total 2015/2016 growing season rainfall at the location of the smallholder 

farmer 𝑖 in the survey year of interest 𝑡 = 2015, and 𝑅̅𝑖𝑡 and 𝜎𝑠𝑑  are the average and standard 

deviation growing season rainfall respectively at the location of the smallholder farmer 𝑖 over 

the growing season reference period 2008/2009 - 2014/2015 preceding the 2015/2016 growing 

season. The treatment group is validated and defined by assigning a value of 1 to all smallholder 

farmers located in districts severely impacted by the El Niño drought-induced shock where the 

rainfall shock identifier is negative. However, households in areas that were either less affected 

or unaffected by the droughts are assigned a value of zero, serving as the counterfactual group. 
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Furthermore, note that I synonymously use the terminologies treatment vs control, treatment 

vs untreated, treated vs counterfactual, and exposed vs unexposed. 

This study considers five behavioural responses to extreme weather stressors that are 

commonly hypothesized to influence farm households’ adaptive capacity. These include crop 

diversification, cropland adjustment, seed consumption and inorganic fertilizer variations, and 

off-farm income enterprises. The first four responses capture productive margin of adjustments 

to adverse climatic conditions whereas off-farm income captures all off-farm income 

enterprises that serve as shock-coping instruments against extreme weather events. Due to 

space restrictions, the subsection below only defines and constructs the crop diversification 

index while the rest of the dependent variables are defined in appendix A alongside all other 

variables. 

Crop Diversification Index 

Crop diversification involves the cultivation of different crop types or consumption of different 

seed varieties of the same crop type during the cropping season (Bezabih & Sarr, 2012; 

Bradshaw et al., 2004; McCord et al., 2015; Mulwa & Visser, 2020). Although there exist 

several variants of indices that measure crop diversification, these indices all intuitively attempt 

to capture and relay information on the degree of climate risk smallholder farmers are willing 

to assume or show how diversified crop portfolio management strategies are with respect to 

the number of different cultivated crops over the growing season. Besides, irrespective of the 

crop diversification measure, the degree of crop diversity is inversely related to both risk and 

vulnerability to adverse weather conditions. Therefore, a relatively lower crop diversification 

increases the risks of exposure and vulnerability to random weather shocks whereas the 

opposite minimizes climate-related risks and strengthens farm households’ adaptive capacity 

to extreme weather stressors. 

Most previous empirical research either adopts the Simpson Index of Diversification (SID) or 

Herfindahl-Hirschman Index (HHI) as crop diversification measures because they both 

adequately provide insights into farm households’ cropping frequency and intensity using 

information on the number of cultivated crops and corresponding hectarage shares 

(Auffhammer & Carleton, 2018; Birthal & Hazrana, 2019; Kankwamba et al., 2018; Mulwa & 

Visser, 2020; Ochieng et al., 2020; Piedra-Bonilla et al., 2020). Since the HHI is a subset of the 

SID, and notwithstanding that the two indices are closely related and arrive at the same 

conclusion on the degree of climate risk, I adopt the SID (Simpson, 1949) as a measure of crop 

diversity. Therefore, following studies such as Kankwamba et al. (2018), Piedra-Bonilla et al. 

(2020), and Ochieng et al. (2020), I exploit information on cropping frequency and associated 

cropland shares at the location of the smallholder farmer to construct the SID shown below: 

𝑆𝐼𝐷 = 1 −  ∑ 𝑁𝑗
2

𝑛

𝑗=1

… … … … … … … … … … … … … … … … . … … … … … … … … … … … … … … .2 

where HHI= ∑ 𝑁𝑗
2𝑛

𝑗=1 ,  𝑁𝑗 =
𝐶𝑗

∑ 𝐶𝑗
𝑛
𝑗

 represents the percentage of land in hectares allocated to the 

𝑗𝑡ℎ crop, and 𝑗 = 1,2,3, … 𝑛  is the number of cultivated crops. As can be seen in equation (2), 

the number of cultivated crops and how equally the land is apportioned across these crops 

determines the overall value of the SID, which ranges between 0 and 1 (Joshi et al., 2004; 

Kankwamba et al., 2018; Ochieng et al., 2020; Piedra-Bonilla et al., 2020). Thus, the 

implications of equation (2) are that the degree of crop diversity and farm specialization 

increase as the SID approaches 1 and 0 respectively. By extension, this implies that highly 
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diversified farm households have HHI values closer to zero while higher values of HHI that 

tends towards 1 are an indication of increased farm specialization. 

3.2 Descriptive Analysis  

Table 1 below shows selected vital summary statistics of smallholder farmers in the overall 

sample and treatment groups using the 2012 RALS as the baseline sample. The average values 

in the overall sample suggest that farm households cultivate roughly 2.3 hectares and consume 

about 86 and 251 kg’s of seeds and inorganic fertilizers respectively. Further, column 1 also 

shows a high average off-farm income, an indication that most farm households participate in 

off-farm income activities. Additionally, a low SID value is indicative of a more specialized 

cropping pattern and/or increased reliance on monoculture agricultural systems. Besides, 

nearly 45% of farm households belong to a cooperative society, and about 49%, 55%, and 16% 

accessed fertilizer-seed support, agricultural extension services, and agricultural credit 

respectively. 

With regard to the choice of adaptive strategy, the majority of farm households (66%) rely more 

on crop residues. Furthermore, almost 32% of smallholder farmers adopt minimum soil 

disturbance and soil moisture-enhancing technologies, while around 17%, 11%, 18%, and 9% 

of the sample adopt crop rotation, legume-intercropping, irrigation, and animal-plant manure 

respectively. Moving on, panel D shows that the average age and highest level of formal 

education for the household head is about 45 and 6 years respectively. Moreover, most farm 

households are headed by males (81%), of which 82% are either in a monogamous or 

polygamous marriage. Additionally, on average, a typical rural household size consists of about 

6 members. In terms of farm characteristics shown in panel E, smallholder farmers in the 

overall sample own approximately 7 farm implements and cultivate about 3 crops and 4 

agricultural fields during the growing season. Besides this, farm households maintain roughly 

6 livestock units. 
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Table 1: Summary Statistics 

Variable All Treatment Control 

 (1) (2) (3) 

Panel A: Outcome Variables    

Hectares Cultivated (ha) 2.30 2.51 2.20 

Seed Consumption (kg) 85.56 84.57 86.09 

Fertilizer Usage (kg) 250.78 256.90 247.50 

Off-Farm Income (ZMW) 7,793,169 8,633,276 7,343,866 

Simpson Index of Diversification 0.36 0.33 0.37 

Panel B: Agricultural Support    

Membership – Agricultural Cooperative Societies (Yes=1) 0.45 0.40 0.48 

Fertilizer & Seed Support (Yes=1) 0.49 0.41 0.53 

Agricultural Extension Services (Yes=1) 0.55 0.57 0.54 

Access to Agricultural Credit (Yes=1) 0.16 0.22 0.13 

Panel C: Choice of Adaptive Strategy    

Minimum Soil Disturbance (Yes=1) 0.32 0.09 0.44 

Crop Rotation (Yes=1) 0.17 0.07 0.22 

Legume Intercropping (Yes=1) 0.11 0.05 0.14 

Crop Residues – Soil (Yes=1) 0.66 0.69 0.65 

Irrigation (Yes=1) 0.18 0.21 0.16 

Animal & Plant Manure (Yes=1) 0.09 0.14 0.07 

Soil Erosion Prevention Measures (Yes=1) 0.32 0.21 0.38 

Panel D: Socio-demographic Characteristics    

Age (Head) 45.49 45.79 45.33 

Education (Head) 6.17 6.09 6.22 

Household Head (Male=1) 0.81 0.79 0.82 

Marital Status (Married=1) 0.82 0.80 0.83 

Household Size 5.85 5.86 5.84 

Panel E: Farm Characteristics    

Number of Farm Implements 6.72 7.09 6.52 

Number of Cultivated Crops 2.96 2.62 3.14 

Number of Cultivated Fields 3.80 3.40 4.02 

Number of Livestock Owned 6.24 9.33 4.59 

Observations 8,839 3,080 5,759 

Note: ZMW denotes the units for the Zambian currency “Kwacha” 

However, partitioning the overall sample into treatment and counterfactual groups reveals 

striking differences between the two groups. In particular, a comparison of columns (2) and (3) 

show that treatment farm households cultivate more hectares than control group households. 

Furthermore, treated households relatively earn more from off-farm income activities than 

counterfactual households. However, the degree of crop diversification is relatively lower in 

the treatment sample. Besides this, more counterfactual group households belong to 

cooperative societies and benefit from fertilizer-seed support compared to treatment 

households. However, there are more beneficiary treated farm households of agricultural 

extension services and credit relative to the untreated group. Moreover, panel C shows that 

treatment groups exhibit different adoption rates across all adaptive strategies. Likewise, socio-



American Journal of Economies      

ISSN 2520 - 0453 (Online)   

Vol. 10, Issue 1, pp 1 - 51, 2026                                                             www.ajpojournals.org  

                                                                                                                                                                        

https://doi.org/10.47672/aje.2847                           12                                            Tounkara (2026) 

 

demographic and farm characteristics of treatment groups are noticeably different. Altogether, 

these noticeable differences between treated groups may have serious implications on the 

effectiveness of agricultural policy in influencing behavioural responses of treatment groups to 

climatic variability and change. 

Given that there may be justified fears that these pre-treatment compositional differences may 

bias the estimated results and affect the effectiveness of agricultural policy, I apply matching 

methods to generate a matched panel sample of treated groups that are observationally similar 

(Khandker et al., 2009; Rosenbaum & Rubin, 1983, 1984, 1985). More specifically, I employ 

both the Kernel and Nearest Neighbour (NN) matching approaches to evaluate matching 

quality. Due to space limitations, I only show the standard Kernel matching quality results 

because the Kernel matching estimator relatively produces better matching results. Table 2 

below shows covariate balance tests for selected variables, and we can see that the application 

of matching significantly minimizes the average differences between treatment groups in the 

matched sample. 

Additionally, figure 2 below shows baseline compositional distributional differences between 

treatment and untreated groups both before and after matching. Particularly, panels A and B of 

figure 2 both show the appeal of matching and visibly suggest that the differences between 

treated and counterfactual groups dissipate and become indistinguishable from zero after 

applying matching. Therefore, matching shrinks the compositional differences in observable 

pre-exposure characteristics and consequently minimize the associated potential selection bias. 

This, in turn, enables the study to derive reliable causal estimates and insights that can guide 

the development of targeted agricultural policies aimed at enhancing the adaptive capacity of 

treatment farm households. Although matching does not completely eliminate unobserved pre-

exposure compositional differences in household characteristics between treated groups 

(Heckman et al., 1997; Rosenbaum & Rubin, 1985), applying panel data methods to a matched 

panel dataset helps to significantly eliminate or address selection bias concerns since panel data 

methods such as the Mundlak CRE and FE model controls for, among others, unobserved 

heterogeneity. 
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Table 2: Covariate Balance Test 

  Unmatched Mean  %Reduct t-test 

Variable  Matched       Treated   Control      %Bias |Bias| t p > |t| 

Household Head  U .79384       .82648      -8.3  -3.28 0.001 

 M .79384       .80474      -2.8 66.6 -0.94 0.349 

Education U 5.9519        6.0952      -3.9  -1.53 0.125 

 M 5.9519        6.0103      -1.6 59.3 -0.54 0.592 

Age U 46.799       45.974      5.6  2.20 0.027 

 M 46.799      46.296       3.4 39.1 1.17 0.244 

Marital Status U .81029      .83729     -7.1  -2.79 0.005 

 M .81029      .81922      -2.3 66.9 -0.79 0.429 

Farm Implements   U 7.3803        6.7482     8.3  3.10 0.002 

 M 7.3803      7.5916      -2.3 66.6 -0.95 0.340 

Cultivated Crops   U 2.7154       3.2302    -32.6  -12.49 0.000 

 M 2.7154       2.7109       0.3 99.1 0.11 0.915 

Cultivated Fields   U     3.5384       4.154     -29.9  -11.56 0.000 

 M 3.5384       3.5373       0.0 99.8 0.02 0.985 

Livestock Units  U 10.367       5.0901     31.4  13.30 0.000 

 M 10.367       9.0162       8.0 74.4 2.37 0.018 

Membership  –  Agricultural Cooperative U .43676       .50835    -14.4  -5.60 0.000 

 M .43676      .45572      -3.8 73.5 -1.31 0.189 

Fertilizer & Seed Support U .4296       .56149     -26.6  -10.38 0.000 

 M .4296       .45729      -5.6 79.0 -1.92 0.055 

Peer Influence  U .11046       .10299      2.4  0.95 0.343 

 M .11046       .10669       1.2 49.6 0.42 0.677 

Access to Credit U .23145       .14178     23.2  9.29 0.000 

 M .23145        .24131      -2.5 89.0 -0.80 0.424 

Crop Rotation U .0801        .22949    -42.2  -15.58 0.000 

 M .0801        .08311     -0.9 98.0 -0.38 0.705 

Intercropping U .04722        .14108     -32.6  -11.95 0.000 

 M .04722        .04479       0.8 97.4 0.40 0.691 

Crop Residues  –  Soil U .69519        .65225     9.2  3.56 0.000 

 M .69519         .69053      1.0 89.1 0.35 0.728 

Irrigation U    .22386         .1707     13.4  5.30 0.000 

 M .22386         .20959       3.6 73.1 1.19 0.233 

Animal & Plant Manure U .14798          .07007     25.2  10.31 0.000 

 M .14798          .13001      5.8 76.9 1.79 0.074 

Bunding U .01265          .19092    -61.7  -21.61 0.000 

 M .01265         .06657    -18.7 69.8 -9.61 0.000 

Ridging U .06239        .42934     -94.2  -33.91 0.000 

 M .06239       .08486      -5.8 93.9 -2.96 0.003 

Hectares Cultivated  U 2.6356        2.3133     13.9  5.47 0.000 

 M 2.6356        2.6909      -2.4 82.9 -0.71 0.481 

Simpson Index of Diversification U .33741        .38408     -18.7  -7.19 0.000 
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  M .33741        .33767      -0.1 99.4 -0.04 0.971 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A: Kernel Density Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Kernel Box Plots 

Figure 2: Summary Distributional Characteristics between Unmatched and Matched 

Samples 
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4.0 MATERIALS AND METHODS  

This study adopts the Mundlak CRE model to assess whether agricultural support and choice 

of adaptive strategy influence on-farm and off-farm behavioural responses to extreme drought 

conditions vis-à-vis the counterfactual group. As discussed in the preceding section, I apply 

matching methods prior to estimating the CRE model to minimize the potential selection bias 

that may confound the treatment effect. The two widely used standard panel data models in 

applied research are FE and RE models. Despite their prominence, the two models are not 

devoid of weaknesses. Notably, FE estimations are unable to capture time-constant effects 

while RE models require the strict exogeneity assumption to hold to guarantee unbiased 

estimates (Wooldridge, 2015). However, the CRE model is relatively more flexible because it 

captures the unobserved heterogeneity that stems from time-constant omitted variables using 

averages of time-varying observed covariates (McCarthy et al., 2021; Mundlak, 1978; 

Schunck, 2013; Schunck & Perales, 2017; Wooldridge, 2019). Thus, the CRE framework not 

only retains time-constant effects and other desirable attributes of both FE and RE models but 

also explicitly accounts for any statistical dependence between time-varying observed 

covariates and random effects (Mundlak, 1978; Wooldridge, 2011, 2019).  

Given the foregoing, I estimate the matched CRE model using the following reduced-form 

econometric specification to explore behavioural responses of treatment farm households 

relative to the control group: 

𝑙𝑛𝑦𝑖𝑡 = 𝛼 + 𝛽𝑇𝑖𝑡 + 𝜑𝐼𝑡𝑖𝑚𝑒 + 𝛿𝐷𝑖𝑡 + 𝜃𝑇𝑖𝑡𝐷𝑖𝑡 +  𝜓𝑍𝑖𝑡 + 𝜀𝑖𝑡  … … … … … … … … … … … … …  3 

where 𝑙𝑛𝑦𝑖𝑡 represents the natural logarithm of the dependent variables of interest (crop 

diversity, cropland share, seed consumption, fertilizer use, and off-farm income) for household 

𝑖 in year 𝑡, 𝑇𝑖𝑡 is a treatment dummy variable taking the value 1 for extreme drought exposure 

(i.e., treatment group) and zero otherwise, 𝐼𝑡𝑖𝑚𝑒 is the time dummy variable capturing the 

period before (𝐼𝑡𝑖𝑚𝑒 = 0) and after (𝐼𝑡𝑖𝑚𝑒 = 1) drought exposure, 𝐷𝑖𝑡 is a vector of dummy 

variables capturing access to agricultural support and the choice of adaptive strategy, 𝑍𝑖𝑡 is a 

set of control variables such as household characteristics, farm attributes and social/peer 

influence, and 𝜀𝑖𝑡 is the error term. The coefficient 𝛼 is the intercept, 𝛽 measures the average 

treatment effect of severe drought exposure relative to unexposed households, 𝜑 compares the 

average difference in the behavioural margin of adjustment between pre- and post-exposure 

periods, 𝛿 captures the average differential influence of the choice of adaptive strategy and 

agricultural support variables on productive and off-farm behavioural responses during average 

weather conditions, and the average differential coefficient of interest 𝜃 determines whether 

agricultural support and the choice of adaptive strategy influence behavioural responses of 

treatment farm households differently relative to the untreated group. 

To shade further insights into the extent of autonomous adaptation, I also separately evaluate 

and compare on-farm and off-farm behavioural responses of treatment groups both before and 

after the drought shock. Therefore, I re-specify equation (3) and estimate the following 

estimable reduced form matched CRE model: 

𝑙𝑛𝑦𝑖𝑡 = 𝛼 + 𝛽𝑝𝑟𝑒𝑇𝑖𝑡
𝑝𝑟𝑒 + 𝛽𝑝𝑜𝑠𝑡𝑇𝑖𝑡

𝑝𝑜𝑠𝑡 +  𝜑𝐼𝑡𝑖𝑚𝑒 +  𝛿𝐷𝑖𝑡 + 𝜃𝑇𝑖𝑡𝐷𝑖𝑡 + 𝜓𝑍𝑖𝑡 + 𝜀𝑖𝑡 … … … …  4 

where 𝑇𝑖𝑡
𝑝𝑟𝑒

is a binary variable equal to 1 and captures the treatment group prior to the drought 

shock whereas 𝑇𝑖𝑡
𝑝𝑜𝑠𝑡

 is the counterpart dummy variable equal to 1 that captures treated 

households after the drought shock, and all the other variables are as defined previously. The 

coefficient 𝛽𝑝𝑟𝑒 compares behavioural margin of adjustments between treatment groups before 
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the drought shock. Similarly, the coefficient 𝛽𝑝𝑜𝑠𝑡  measures differential behavioural responses 

of treatment farm households relative to the counterfactual group after the drought shock. 

As the case is with many other household-level datasets, the observational dataset that this 

study exploits also contains outliers on both extremes. Specifically, on the one hand, the dataset 

contains true zeros because some smallholder farmers adopt mono-cropping agricultural 

practices, rely more on organic than inorganic fertilizers, choose not to cultivate during the 

growing season, or genuinely earn zero off-farm incomes. On the other hand, there are also 

farm households that earn unusually high off-farm incomes and consume extremely large 

quantities of farming inputs. Thus, it is not uncommon for rural household-level datasets to 

contain outliers, and the presence of these extreme values inhibits the variables from exhibiting 

the normal distribution properties. Besides, since the logarithm of zero is undefined, taking the 

natural logarithm of genuine zero-valued observations drops the zero-values from the dataset. 

Therefore, despite being attractive, the log transformation eliminates zero-valued observations 

from the dataset and hence, deprives the study of a meaningful analysis and perspective that 

would potentially come from the subset of zero-valued observations that the log-transformation 

drops (Bellemare & Wichman, 2020).  

There are several ad hoc log transformations in the applied econometrics literature that attempt 

to simultaneously minimize the influence of outliers and sidestep the dropping of meaningful 

nonpositive observations (Bellemare & Wichman, 2020; MaCurdy & Pencavel, 1986; 

Michalopoulos & Papaioannou, 2013; Norton, 2022). As a case in point, Michalopoulos and 

Papaioannou (2013) adds a small number of about 0.01 to zero-valued observations prior to 

executing the log transformation while MaCurdy and Pencavel (1986) adopts a similar 

approach that adds a value of 1 to nonnegative values. Similarly, the empirical literature also 

shows growing use of the inverse hyperbolic sine function (also dubbed the arcsinh 

transformation) to preserve zero-valued observations (Bellemare & Wichman, 2020; Burbidge 

et al., 1988; MacKinnon & Magee, 1990; Norton, 2022; Pence, 2006; Ravallion, 2017). Given 

the foregoing, it is obvious that ad hoc log transformations affect the size of effect estimates. 

Recent empirical support to this effect demonstrates that there are substantial differences in 

elasticity estimates derived from the arcsinh transformation and common ad hoc log 

transformations that add 1 to zero-valued observations (Bellemare & Wichman, 2020). Thus, 

this suggests that the choice of ad hoc log transformation can have huge direct implications on 

the magnitude of coefficient estimates. This notwithstanding, and given the growing use of the 

inverse hyperbolic sine function and its associated attractive properties (Bellemare & 

Wichman, 2020; Norton, 2022; Ravallion, 2017), I also apply the inverse hyperbolic sine 

function defined below to transform all continuous dependent and independent variables of 

interest in the dataset. 

         𝑠𝑖𝑛ℎ−1(𝑥) = ln [ 𝑥 + (𝑥2 + 1)
1
2 ] … … … … … … … … … … … … … . … … … … … … … …  5 

Since the inverse hyperbolic sine transformation retains zero-valued observations across all the 

dependent variables, the appropriate model to estimate is the CRE tobit model. More 

specifically, I use the bounded CRE tobit to model the association between crop diversification 

and drought exposure since the SID lies between zero and one. However, the rest of the 

estimations involving the other dependent variables – i.e., cropland share, seed uptake, fertilizer 

use, and off-farm income – adopts a left-censored CRE tobit model that is truncated at the 

lower bound of zero to evaluate respective behavioural responses to severe drought conditions 

vis-à-vis the counterfactual group. 
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5.0 FINDINGS  

To compare behavioural responses between treatment groups, I conduct two sets of analysis 

using specifications (3) and (4) discussed in the previous section. Specifically, the first 

comparative assessment focuses on productive margin of adjustments while the second set 

compares off-farm behavioural responses of treatment units. Furthermore, to correctly interpret 

the coefficients on dummy variables across the estimated semilogarithmic specifications, I 

transform the coefficients of interest by exponentiating them and thereafter subtracting one 

from the outcome. This method of transforming coefficients is consistent with the approach 

taken and/or guidance provided by Halvorsen and Palmquist (1980), Kennedy (1981), and 

Bellemare and Wichman (2020). As such, the estimates discussed in the text will be slightly 

different from those reported in the results tables. Additionally, note that each table reports the 

estimated results derived from both specifications (3) and (4) (hereafter labelled model 1 and 

2 respectively). Later on, I conduct several robustness tests to check the sensitivity of the main 

CRE results to alternative estimation approaches, sample size restrictions, and alternate dataset. 

5.1 On-Farm Margin of Adjustments  

5.1.1 Crop Diversification  

Table 3 below reports the results derived from the bounded CRE tobit specification that 

associates crop diversification with extreme drought exposure, agricultural support, and choice 

of adaptive strategy. Columns (1) and (2) both show that drought exposure significantly reduces 

the degree of crop diversification among treatment farm households. Specifically, the drought 

shock coefficient in the naïve specification (1) is negative and highly statistically significant, 

suggesting that drought exposure lowers the degree of crop diversification in drought-hit areas 

by roughly 9% relative to the unexposed group. Similarly, this coefficient remains negative and 

statistically significant in the preferred conditional specification (2) although the absolute size 

of the coefficient reduces to about 2.1%. A relatively lower level of crop diversity is indicative 

of increased farm specialization and vulnerability to climate-related risks. As such, I interpret 

this to be evidence that poor farm households respond to drought exposure by shifting towards 

more specialized cropping practices and cultivating suitable low-value crops to guarantee food 

security. Although this observation is at variance with studies showing that farm households 

improve crop diversification strategies to cope with extreme weather stressors (Asfaw et al., 

2018; Bezabih & Sarr, 2012; McCord et al., 2015; Mulwa & Visser, 2020; Piedra-Bonilla et 

al., 2020), the results are broadly consistent with other previous studies that establish a negative 

association between crop diversification and adverse climatic conditions (Bradshaw et al., 

2004; Cohn et al., 2016; Di Falco et al., 2010; Ndhlovu & Muchapondwa, 2020; Ochieng et 

al., 2020). 

In addition, the naïve specification (3) shows that the coefficients on the pre- and post-treatment 

variables are negative and highly statistically significant. While these coefficients retain the 

direction of impact in the preferred conditional specification (4), the post-treatment coefficient 

losses statistical significance. Moving on, column (2) shows that the time dummy coefficient 

is positive and highly statistically significant, suggesting that overall crop diversity improves 

by about 2.3% after the drought shock. Likewise, this coefficient remains positive in 

specification (4) but becomes statistically insignificant. Furthermore, under average weather 

conditions, specifications (2) and (4) both show that access to fertilizer-seed support induce 

discernible adverse effects. This dissuading crop diversification effect is not surprising given 

that Zambia’s past agricultural policy has largely been biased towards supporting the 

cultivation of maize at the expense of other crops. Therefore, this finding points to the inherent 

structural bias of the fertilizer-seed support programme towards the cultivation of localized 
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staple crops. Further to this, noticeable positive impacts of agricultural credit can be seen in 

both specifications (2) and (4). This finding supports the widely held premise that improved 

access to credit can allow smallholder farmers to boost crop diversification strategies. With 

regard to the impacts of adaptive strategies, columns (2) and (4) both show that most adaptive 

land investments appear to largely strengthen the degree of crop diversity during regular 

weather conditions. 

However, under extreme drought conditions, the estimated coefficients on the interaction terms 

across specifications (2) and (4) show contrasting and, in some cases, limited impacts. 

Specifically, restricting the analysis to statistically significant interaction coefficients, the 

results in column (2) suggest that treatment beneficiaries of fertilizer-seed support and 

agricultural credit improve crop diversification strategies by about 3.3% and 7.3% respectively 

relative to the counterfactual group. Comparable estimates can also be observed in specification 

(4). Thus, I take this to be empirical support that treatment beneficiaries of fertilizer-seed 

support and agricultural credit respond to drought conditions by improving crop portfolio 

management strategies. As such, strengthening government support towards fertilizer and seed 

acquisition, and eliminating agricultural credit bottlenecks can be effective conduits through 

which crop diversification can be improved in areas experiencing severe moisture stress 

conditions. Additionally, specification (2) shows that treated adopters of adaptive strategies 

largely reduce the degree of crop diversification compared to the control group. Similarly, the 

results shown in specification (4) provides comparable noticeable negative interaction effects. 

Although these findings mostly contradict the impacts of adaptive strategies on crop 

diversification previously observed under average weather conditions, I however take these 

results to be empirical support that treated adopters largely reduce their crop diversity or adopt 

mono-cropping agricultural practices in response to extreme drought exposure to guarantee 

food security. Therefore, localized drought conditions appear to incentivize rural smallholder 

farmers to embrace adaptive land strategies that complement monoculture agricultural systems. 

Besides, since climate-smart practices are expensive to implement and sustain, I take this to be 

suggestive evidence that costly adaptive land investments dissuade poor treated adopters from 

diversifying their crop portfolio management strategies. 
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Table 3: Productive Margin of Adjustment - Crop Diversification 

Dependent Variable: ln (Simpson Index 

of Diversification - SID) 

Model 1 Model 2 

(1) (2) (3) (4) 

Drought Shock (1=Yes) -0.0861*** -0.0204*   

 (0.00553) (0.0108)   

Pre-Treatment    -0.102*** -0.0319*** 

   (0.00629) (0.0118) 

Post-Treatment   -0.0603*** -0.00325 

   (0.00733) (0.0130) 

Time Dummy  0.0230***  0.0117 

  (0.00705)  (0.00854) 

Agricultural Support      

Fertilizer-Seed Support (1=Yes)  -0.0240***  -0.0244*** 

  (0.00785)  (0.00785) 

Agricultural Extension (1=Yes)  0.00806  0.00843 

  (0.00636)  (0.00636) 

Agricultural Credit (1=Yes)  0.0969***  0.0962*** 

  (0.00768)  (0.00768) 

Choice of Adaptive Strategy      

Minimum Soil Disturbance (1=Yes)  0.0868***  0.0859*** 

  (0.00595)  (0.00596) 

Crop Rotation (1=Yes)  0.118***  0.118*** 

  (0.00624)  (0.00624) 

Crop Residues – Soil (1=Yes)  0.0350***  0.0333*** 

  (0.00586)  (0.00590) 

Legume Intercropping (1=Yes)  0.0308***  0.0312*** 

  (0.00799)  (0.00798) 

Agroforestry (1=Yes)  0.0420***  0.0485*** 

  (0.00825)  (0.00869) 

Irrigation (1=Yes)  0.0121  0.0131* 

  (0.00755)  (0.00756) 

Animal Plant Manure (1=Yes)  0.00377  0.00341 

  (0.0108)  (0.0108) 

Soil Erosion Prevention Practices (1=Yes)  0.0261***  0.0267*** 

  (0.00580)  (0.00581) 

Extreme Drought Conditions – 

Interaction Terms  

    

Shock × Fertilizer-Seed Support   0.0323**  0.0329** 

  (0.0128)  (0.0128) 

Shock × Agricultural Extension  0.00750  0.00625 

  (0.0105)  (0.0105) 

Shock × Agricultural Credit  0.0700***  0.0716*** 

  (0.0117)  (0.0118) 

Shock × Minimum Soil Disturbance   -0.0509***  -0.0479*** 

  (0.0104)  (0.0105) 

Shock × Crop Rotation  -0.0200*  -0.0165 

  (0.0110)  (0.0111) 

Shock × Legume Intercropping  -0.0317*  -0.0337** 

  (0.0171)  (0.0171) 

Shock × Crop Residues – Soil  -0.0349***  -0.0289*** 

  (0.00974)  (0.0101) 

Shock × Agroforestry  -0.0262**  -0.0421*** 

  (0.0119)  (0.0137) 

Shock × Irrigation  0.00137  0.000583 

  (0.0119)  (0.0119) 

Shock × Animal Plant Manure  0.00154  0.00211 

  (0.0146)  (0.0146) 

Shock × Soil Erosion Prevention  0.00419  0.00253 
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Measures 

  (0.0102)  (0.0102) 

Constant 0.361*** 0.171*** 0.360*** 0.164*** 

 (0.00305) (0.0502) (0.00306) (0.0502) 

Demographic Household Characteristics  No Yes No Yes 

Household Wealth No Yes No Yes 

Farm Characteristics No Yes No Yes 

Membership – Farmer Support Groups  No Yes No Yes 

Peer Influence  No Yes No Yes 

Observations 21800 21800 21800 21800 

Standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

5.1.2 Cropland Adjustment     

Table 4 below reports empirical estimates showing farm households’ cropland response to 

extreme drought exposure and how agricultural support and the choice of adaptive strategy 

affects cropland adjustments under regular and extreme weather conditions. The unconditional 

specification (1) shows a positive and highly statistically significant drought exposure impact. 

This coefficient retains the direction of impact and statistical significance in the preferred 

specification (2), suggesting that extreme drought exposure results in cropland expansion of 

about 11.6% among treated households relative to the untreated group. Notwithstanding the 

inducement effect of severe drought stresses on farm specialization observed in the preceding 

subsection, I interpret this result to be empirical support that smallholder farmers respond to 

extreme drought exposure conditions by expanding hectarage shares of localized low-value 

staple crops to minimize the risks of yield losses. This observation speaks to previous empirical 

findings (Aragón et al., 2021; Cho & McCarl, 2017; Cohn et al., 2016; Cui, 2020b; Iizumi & 

Ramankutty, 2015), and thus, cropland expansion appears to be one response strategy used by 

risk-averse farmers to mitigate drought-induced crop production risks. 

Next, columns (3) and (4) both show that treatment households relatively cultivate large 

portions of land both pre- and post-drought exposure. Particularly, unlike in the unconditional 

specification (3), the preferred conditional specification (4) shows that treatment smallholder 

farmers cultivate more land both before and after drought exposure of about 14.5% and 7.4% 

respectively relative to the untreated group. However, since the post-drought exposure cropland 

expansion of treatment households is relatively lower than that of the analogous pre-treatment 

period, I hypothesize that exposure to severe drought conditions incentivize farm households 

to reduce the rate of cropland expansion. Further, columns (2) and (4) both show that the time 

dummy coefficients are positive and highly statistically significant. This suggests that overall 

hectarage shares increased in the range 11.1% - 13.9% among smallholder farmers after the 

drought shock.  

With regard to the impacts of agricultural support on cropland share under average weather 

conditions, specification (2) reveals that beneficiaries of agricultural extension services and 

credit considerably expand croplands by approximately 4.2% and 18.4% respectively. 

Similarly, comparable results can also be seen in specification (4) with respect to the effect 

size, statistical significance, and direction of impact. Besides this, specification (2) also shows 

that the adoption of adaptive land investments such as crop rotation and agroforestry 

contributes to cropland expansion of roughly 6.4% and 3.6% respectively. However, adopters 

of intercropping, irrigation, and soil erosion prevention measures downsize their land use 

shares by about 5.5%, 4.8%, and 2.4% respectively. Similar findings are reported in 
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specification (4) where the results remain largely unchanged with respect to the coefficient 

sign, effect size, and statistical significance. 

However, under extreme drought stresses, columns (2) and (4) both show that agricultural 

support and choice of adaptive strategy influence cropland adjustment decisions of treatment 

households differently relative to the counterfactual group. Restricting the discussion to 

discernible interaction effects, specification (2) reveals that treated beneficiaries of fertilizer-

seed support and agricultural credit respond to extreme drought exposure conditions by 

expanding and downsizing croplands by approximately 5.9% and 11.2% respectively relative 

to the control group. The latter results are in sharp contrast to the results previously observed 

under average weather conditions. Therefore, I speculate that access to agricultural credit 

allows poor treated farm households to either strengthen adaptive land investments on smaller 

manageable croplands or diversify away from field crops to other on-farm activities such as 

livestock farming that are relatively less susceptible to aridity conditions. Similarly, 

specification (4) also reports comparable results on the impacts of agricultural support on 

cropland responses of treatment households. Additionally, specification (2) shows that treated 

adopters of minimum soil disturbance, crop rotation, and agroforestry reduce their cropland 

shares by about 4%, 9%, and 4.9% respectively compared to counterfactual group households. 

Similarly, specification (4) also reports equivalent results that largely retain statistical 

significance in addition to showing that adopters of legume-intercropping respond to water 

stress conditions by expanding hectarage shares by roughly 5.7% relative to non-adopters in 

control areas. Overall, I interpret these results to be suggestive evidence that adaptive land 

strategies that are costly to implement and maintain largely discourage cropland expansion in 

drought-hit regions. 
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Table 4: Productive Margin of Adjustment - Cropland Adjustment 

Dependent Variable: ln (Hectares Cultivated) Model 1 Model 2 

(1) (2) (3) (4) 

Drought Shock (1=Yes) 0.0560*** 0.110***   

 (0.0140) (0.0204)   

Pre-Treatment    0.0865*** 0.135*** 

   (0.0160) (0.0224) 

Post-Treatment   0.00707 0.0715*** 

   (0.0187) (0.0248) 

Time Dummy  0.105***  0.130*** 

  (0.0135)  (0.0163) 

Agricultural Support      

Fertilizer-Seed Support (1=Yes)  0.0159  0.0169 

  (0.0149)  (0.0149) 

Agricultural Extension (1=Yes)  0.0407***  0.0399*** 

  (0.0121)  (0.0121) 

Agricultural Credit (1=Yes)  0.169***  0.170*** 

  (0.0148)  (0.0148) 

Choice of Adaptive Strategy      

Minimum Soil Disturbance (1=Yes)  -0.00563  -0.00356 

  (0.0114)  (0.0114) 

Crop Rotation (1=Yes)  0.0620***  0.0631*** 

  (0.0120)  (0.0120) 

Crop Residues – Soil (1=Yes)  0.0117  0.0153 

  (0.0112)  (0.0112) 

Legume Intercropping (1=Yes)  -

0.0534*** 

 -

0.0542*** 

  (0.0154)  (0.0154) 

Agroforestry (1=Yes)  0.0350**  0.0206 

  (0.0158)  (0.0166) 

Irrigation (1=Yes)  -

0.0466*** 

 -

0.0482*** 

  (0.0148)  (0.0148) 

Animal Plant Manure (1=Yes)  0.0129  0.0136 

  (0.0205)  (0.0205) 

Soil Erosion Prevention Practices (1=Yes)  -0.0237**  -0.0251** 

  (0.0111)  (0.0111) 

Extreme Drought Conditions – Interaction Terms      

Shock × Fertilizer-Seed Support   0.0572**  0.0560** 

  (0.0243)  (0.0243) 

Shock × Agricultural Extension  -0.0186  -0.0158 

  (0.0199)  (0.0199) 

Shock × Agricultural Credit  -0.106***  -0.109*** 

  (0.0225)  (0.0225) 

Shock × Minimum Soil Disturbance   -0.0396**  -0.0462** 

  (0.0198)  (0.0200) 

Shock × Crop Rotation  -

0.0871*** 

 -

0.0949*** 

  (0.0209)  (0.0211) 

Shock × Legume Intercropping  0.0516  0.0558* 

  (0.0324)  (0.0325) 

Shock × Crop Residues – Soil  0.0160  0.00299 

  (0.0185)  (0.0191) 

Shock × Agroforestry  -0.0482**  -0.0131 

  (0.0226)  (0.0260) 

Shock × Irrigation  0.00936  0.0112 

  (0.0226)  (0.0226) 

Shock × Animal Plant Manure  -0.0338  -0.0350 
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  (0.0279)  (0.0279) 

Shock × Soil Erosion Prevention Measures  0.00219  0.00593 

  (0.0194)  (0.0194) 

Constant 1.307*** -0.731*** 1.304*** -0.729*** 

 (0.00750) (0.0965) (0.00752) (0.0965) 

Demographic Household Characteristics  No Yes No Yes 

Household Wealth No Yes No Yes 

Farm Characteristics  No Yes No Yes 

Membership – Farmer Support Groups No Yes No Yes 

Peer Influence No Yes No Yes 

Observations 21800 21800 21800 21800 

Standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

5.1.3 Seed Uptake  

The results in table 5 below show farm households’ seed consumption response to severe 

drought stresses, and how agricultural support and choice of adaptive strategy influence seed 

uptake of treatment farm households relative to the control group. To begin with, the drought 

exposure coefficient in the unconditional specification (1) is positive and highly statistically 

significant. Conditioning on demographic household characteristics, wealth, farm attributes, 

membership to farmer support groups, and peer influence, the drought shock coefficient in the 

preferred specification (2) remains positive and highly statistically significant. This, therefore, 

suggests that drought-exposed farm households relatively consume approximately 81.1% more 

seed varieties than their counterparts in the counterfactual group. This observation is in line 

with previous studies that find a positive correlation between extreme weather stressors and 

input utilization (Benhin, 2006; Bryan et al., 2013; Call et al., 2019). Thus, I take this to be 

empirical support that treatment farm households respond to extreme aridity stresses by 

increasing their uptake of drought-resistant seed varieties to improve crop yields and climate 

resilience. 

Moving on, the naïve specification (3) shows that the coefficients on the pre- and post-

treatment variables are positive and highly statistically significant. Similarly, the preferred 

specification (4) equally shows discernible pre- and post-treatment coefficients that are 

relatively larger than those observed in the naïve specification (3). This suggests that treated 

households, on average, consume more quantities of seed varieties than control group 

households both before and after the drought shock. However, the post-treatment coefficient is 

relatively lower than that of the counterpart pre-treatment coefficient. Therefore, I take this to 

be indicative evidence that drought-exposed farm households are reluctant to increase their 

seed uptake to pre-drought consumption levels. Nevertheless, taken as a whole, I find 

supportive evidence showing that risk-averse treatment farm households generally consume 

larger quantities of improved drought-resistant seed varieties to strengthen their adaptive 

capacity and food security. Furthermore, specifications (2) and (4) both show that the 

coefficients on the time dummy variable are positive and highly statistically significant. This 

suggests that there was an overall increase in seed uptake of roughly between 11.1% and 26.4% 

after the drought shock. Thus, I hypothesize that farm households generally boost consumption 

of drought-resistant seeds post-drought shock to lower climate-related crop production risks 

and losses.  

With regard to the impacts of agricultural support on seed consumption under average weather 

conditions, specification (2) reveals that the coefficient on fertilizer-seed support is negative 

and significant, suggesting that beneficiaries of government fertilizer-seed support lower their 
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seed uptake levels by roughly 21.9%. Although this observation is surprising and 

counterintuitive, it does however suggest that risk-averse beneficiaries adopt a staggered 

planting approach and hence withhold some of the seed supplies received and/or postpone the 

acquisition of additional seed stocks. Further, column (2) also shows that beneficiaries of 

agricultural extension services and credit increase their seed uptake by about 17.5% and 5.6% 

respectively. Parallel results in terms of the magnitude and direction of impact can be seen in 

specification (4) where the estimates largely retain statistical significance. Additionally, with 

respect to the influence of adaptive strategies, column (2) shows that adopters of minimum soil 

disturbance, crop rotation, and irrigation relatively consume larger seed quantities of 

approximately 27.9%, 7.9%, and 11.7% respectively compared to non-adopters. However, the 

estimated results in specification (2) also reveal that adopters of legume-intercropping reduce 

seed uptake by about 8.6% during average weather conditions. Comparable results can be 

observed in specification (4) where the coefficient estimates largely retain statistical 

significance. 

However, contradictory impacts can be seen under extreme drought conditions, with 

specifications (2) and (4) both showing that agricultural support and choice of adaptive strategy 

influence seed uptake responses of treatment households differently relative to the unexposed 

group. Specifically, zeroing on the statistically significant interaction coefficients, column (2) 

results show that treated beneficiaries of fertilizer-seed support consume about 41.6% more 

seed varieties than untreated households. Thus, recipients of fertilizer-seed support respond to 

extreme drought shocks by increasing their seed uptake. However, column (2) results also 

reveals that agricultural credit beneficiaries in treated areas reduce seed uptake by roughly 

21.3% relative to the untreated group. Although surprising, I interpret this result to be evidence 

that agricultural finance recipients in treatment regions diversify away from cropping activities 

to other on-farm enterprises. Note that the corresponding estimated results in column (4) mirror 

that of specification (2) with respect to the coefficient sign and statistical significance. In 

addition, the preferred specifications (2) and (4) both show several noticeable interaction terms 

between drought shock and adaptive strategies. Particularly, column (2) shows that treatment 

adopters of minimum soil disturbance, crop rotation, legume- intercropping, and irrigation 

reduce seed uptake levels by approximately 35.3%, 13.9%, 23.4%, and 15.3% respectively 

relative to the counterfactual group. However, column (2) also reveals that the adoption of crop 

residues and soil erosion prevention practices in treatment districts contribute to higher seed 

utilization of roughly 16.5% and 8.7% respectively compared to the untreated group. 

Equivalent results can also be seen in specification (4) where the interaction coefficients of 

interest largely retain the direction of impact and statistical significance. Collectively, I take 

the above results to be indicative evidence that risk-averse smallholder farmers in drought-hit 

regions are unlikely to increase their seed uptake alongside costly adaptive land investments 

that are not suitable to localized aridity conditions. 
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Table 5: Productive Margin of Adjustment - Seed Consumption 

Dependent Variable: ln (Seed Quantity-kg) Model 1 Model 2 

(1) (2) (3) (4) 

Drought Shock (1=Yes) 0.293*** 0.637***   

 (0.0291) (0.0429)   

Pre-Treatment    0.345*** 0.765*** 

   (0.0332) (0.0471) 

Post-Treatment   0.209*** 0.441*** 

   (0.0387) (0.0520) 

Time Dummy  0.105***  0.234*** 

  (0.0284)  (0.0344) 

Agricultural Support      

Fertilizer-Seed Support (1=Yes)  -0.198***  -0.193*** 

  (0.0314)  (0.0313) 

Agricultural Extension (1=Yes)  0.161***  0.156*** 

  (0.0255)  (0.0255) 

Agricultural Credit (1=Yes)  0.0542*  0.0619** 

  (0.0311)  (0.0311) 

Choice of Adaptive Strategy      

Minimum Soil Disturbance (1=Yes)  0.246***  0.256*** 

  (0.0240)  (0.0240) 

Crop Rotation (1=Yes)  0.0761***  0.0818*** 

  (0.0254)  (0.0254) 

Crop Residues – Soil (1=Yes)  0.0121  0.0306 

  (0.0236)  (0.0237) 

Legume Intercropping (1=Yes)  -0.0821**  -0.0862*** 

  (0.0325)  (0.0324) 

Agroforestry (1=Yes)  0.0329  -0.0401 

  (0.0332)  (0.0350) 

Irrigation (1=Yes)  0.111***  0.103*** 

  (0.0312)  (0.0312) 

Animal Plant Manure (1=Yes)  0.0399  0.0434 

  (0.0433)  (0.0432) 

Soil Erosion Prevention Practices (1=Yes)  -0.0101  -0.0173 

  (0.0234)  (0.0234) 

Extreme Drought Conditions – Interaction Terms      

Shock × Fertilizer-Seed Support   0.348***  0.341*** 

  (0.0512)  (0.0512) 

Shock × Agricultural Extension  -0.0307  -0.0166 

  (0.0420)  (0.0420) 

Shock × Agricultural Credit  -0.193***  -0.211*** 

  (0.0474)  (0.0474) 

Shock × Minimum Soil Disturbance   -0.302***  -0.336*** 

  (0.0418)  (0.0420) 

Shock × Crop Rotation  -0.130***  -0.170*** 

  (0.0442)  (0.0445) 

Shock × Legume Intercropping  -0.210***  -0.189*** 

  (0.0684)  (0.0684) 

Shock × Crop Residues – Soil  0.153***  0.0866** 

  (0.0390)  (0.0402) 

Shock × Agroforestry  -0.00378  0.175*** 

  (0.0478)  (0.0548) 

Shock × Irrigation  -0.142***  -0.133*** 

  (0.0477)  (0.0477) 

Shock × Animal Plant Manure  -0.0576  -0.0638 

  (0.0588)  (0.0587) 

Shock × Soil Erosion Prevention Measures  0.0835**  0.102** 

  (0.0409)  (0.0409) 
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Constant 4.327*** 0.928*** 4.320*** 0.923*** 

 (0.0155) (0.208) (0.0155) (0.208) 

Demographic Household Characteristics  No Yes No Yes 

Household Wealth No Yes No Yes 

Farm Characteristics  No Yes No Yes 

Membership – Farmer Support Groups No Yes No Yes 

Peer Influence No Yes No Yes 

Observations 21800 21800 21800 21800 

Standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

5.1.4 Fertilizer Consumption  

Table 6 below reports regression estimates showing the correlation between fertilizer uptake 

and extreme drought exposure, and how agricultural support and choice of adaptive strategy 

affects fertilizer use under average and severe weather conditions. The unconditional 

specification (1) shows a positive and highly statistically significant coefficient on the drought 

exposure variable. Conditioning on other relevant covariates in the preferred specification (2), 

the absolute size of the coefficient on the drought exposure variable reduces and loses statistical 

significance although the estimate retains the coefficient sign.   

Further, the naïve specification (3) shows that the coefficient on the pre-treatment variable is 

positive and highly statistically significant. Similarly, a noticeable positive analogous 

coefficient can also be seen in the preferred specification (4). This suggests that treated farm 

households mostly consume larger quantities of inorganic fertilizers relative to control group 

households prior to experiencing severe aridity conditions. Besides this, the unconditional 

specification (3) also shows that the coefficient on the post-treatment variable is positive but 

not statistically significant. However, the corresponding coefficient on the post-treatment 

variable in the preferred specification (4) is negative and highly statistically significant. 

Interestingly, this is an indication that treatment smallholder farmers relatively consume lower 

fertilizer quantities than counterfactual group households after the drought shock. Moreover, 

comparing fertilizer usage of treated households between the two periods, the preferred 

conditional specification (4) shows that the post-drought exposure fertilizer uptake levels of 

treatment households are significantly lower than that of the analogous pre-treatment period. 

Overall, this observation does speak to selected previous empirical studies such as Sesmero et 

al. (2018) and Chen and Gong (2021). Thus, relative to the unexposed group, I take this to be 

suggestive evidence that poor treated farm households increasingly rely more on organic 

fertilizers such as crop residues post-drought exposure, and hence respond to severe drought 

conditions by reducing their inorganic fertilizer use. 

The time dummy coefficients in specifications (2) and (4) are both positive and highly 

statistically significant. This suggests that overall uptake of inorganic fertilizers was 

significantly higher post-drought exposure among rural smallholder farmers. With respect to 

the impacts of agricultural support and choice of adaptive strategy on fertilizer use under 

average weather conditions, the preferred specification (2) reveals that the coefficients on 

fertilizer-seed support, agricultural extension services, and agricultural credit are positive and 

highly statistically significant. Similar results in terms of the direction of impact, coefficients 

size, and statistical significance can be seen in column (4). Taken together, it can be inferred 

that beneficiaries of agricultural support relatively consume greater quantities of inorganic 

fertilizers during regular weather conditions. Additionally, specifications (2) and (4) both show 

discernible positive coefficients on minimum soil disturbance, crop rotation, crop residues, and 

irrigation, suggesting that adopters relatively consume larger quantities of inorganic fertilizers 
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during average weather conditions. However, specifications (2) and (4) also reveal that the 

coefficients on legume-intercropping are negative and highly statistically significant. 

Therefore, I take this to be empirical support that the adoption of legume-intercropping 

stimulates retrogressive effects on inorganic fertilizer uptake during normal weather 

conditions. This observation is not surprising and makes intuitive sense since legume-

intercropping improves and/or maintains nitrogen levels beneath the soil. Hence, I conjecture 

that the benefits of legume-intercropping such as improvements in soil structure, quality and 

porosity alongside nitrogen fixation attributes reduces the attractiveness of inorganic fertilizers 

and subsequently renders the uptake of chemical fertilizers redundant. 

Last but not least, focusing on the statistically significant interaction coefficients, specifications 

(2) and (4) both show that the coefficient on the interaction term between drought exposure 

and fertilizer-seed support is positive and highly statistically significant. This suggests that 

treatment beneficiaries of fertilizer-seed support consume larger quantities of inorganic 

fertilizer relative to the counterfactual group. However, unlike the results observed under 

average weather conditions, columns (2) and (4) both show that access to agricultural extension 

services and credit stimulate undesirable effects on fertilizer uptake among treated households 

compared to the counterfactual group. Therefore, this observation suggests that treatment 

beneficiaries of agricultural extension services and credit respond to severe aridity conditions 

by reducing their application of inorganic fertilizers. Although this observation is 

counterintuitive, there are several plausible explanations for this observed reducing effect. For 

example, there is a high likelihood that treatment beneficiaries of agricultural credit and 

agricultural extension services with appropriate agricultural information abandon unsuitable 

crops, diversify away from cropping activities towards livestock farming, or increase reliance 

on compost fertilization such as animal-plant manure. 

Further, specification (2) estimates suggest that treatment adopters of minimum soil 

disturbance and legume-intercropping respond to extreme drought conditions by reducing 

inorganic fertilizer application relative to the control group. Thus, I attribute the reduction in 

inorganic fertilizer use to the nitrogen fixation benefits, among others, of legume-

intercropping. However, specification (2) results also show that drought-exposed adopters of 

crop residues, animal-plant manure, and soil moisture-enhancing measures consume greater 

amounts of chemical fertilizer compared to the counterfactual group. Therefore, I take this 

observation to be suggestive evidence of complementarity between organic and inorganic 

fertilizer use in areas prone to extreme water stress conditions among adopters of soil moisture-

enhancing technologies. Equivalent estimates can also be observed in the analogous preferred 

specification (4) where the absolute magnitudes of the coefficient estimates are slightly larger 

but remain mostly intact in terms of statistical significance and direction of impact. 
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Table 6: Productive Margin of Adjustment - Fertilizer Utilization 

Dependent Variable: ln (Fertilizer Usage -kg) Model 1  Model 2  

(1) (2) (3) (4) 

Drought Shock (1=Yes) 0.511*** 0.0400   

 (0.0951) (0.147)   

Pre-Treatment    0.724*** 0.604*** 

   (0.108) (0.160) 

Post-Treatment   0.145 -0.805*** 

   (0.126) (0.176) 

Time Dummy  1.190***  1.735*** 

  (0.0935)  (0.113) 

Agricultural Support      

Fertilizer-Seed Support (1=Yes)  2.716***  2.737*** 

  (0.102)  (0.101) 

Agricultural Extension (1=Yes)  0.266***  0.248*** 

  (0.0820)  (0.0818) 

Agricultural Credit (1=Yes)  0.288***  0.320*** 

  (0.0999)  (0.0997) 

Choice of Adaptive Strategy      

Minimum Soil Disturbance (1=Yes)  0.786***  0.832*** 

  (0.0787)  (0.0787) 

Crop Rotation (1=Yes)  0.377***  0.401*** 

  (0.0819)  (0.0817) 

Crop Residues – Soil (1=Yes)  0.100  0.179** 

  (0.0768)  (0.0772) 

Legume Intercropping (1=Yes)  -0.521***  -0.540*** 

  (0.107)  (0.107) 

Agroforestry (1=Yes)  -0.0378  -0.343*** 

  (0.108)  (0.113) 

Irrigation (1=Yes)  0.564***  0.530*** 

  (0.100)  (0.100) 

Animal Plant Manure (1=Yes)  -0.0535  -0.0374 

  (0.139)  (0.139) 

Soil Erosion Prevention Practices (1=Yes)  0.0384  0.00840 

  (0.0761)  (0.0759) 

Extreme Drought Conditions – Interaction Terms      

Shock × Fertilizer-Seed Support   1.484***  1.455*** 

  (0.167)  (0.167) 

Shock × Agricultural Extension  -0.323**  -0.256* 

  (0.138)  (0.138) 

Shock × Agricultural Credit  -0.754***  -0.820*** 

  (0.155)  (0.155) 

Shock × Minimum Soil Disturbance   -0.831***  -0.981*** 

  (0.138)  (0.139) 

Shock × Crop Rotation  0.0793  -0.0881 

  (0.144)  (0.145) 

Shock × Legume Intercropping  -0.638***  -0.574** 

  (0.232)  (0.232) 

Shock × Crop Residues – Soil  0.590***  0.300** 

  (0.129)  (0.133) 

Shock × Agroforestry  -0.229  0.548*** 

  (0.156)  (0.180) 

Shock × Irrigation  -0.117  -0.0761 

  (0.156)  (0.156) 

Shock × Animal Plant Manure  0.490**  0.462** 

  (0.191)  (0.191) 

Shock × Soil Erosion Prevention Measures  0.252*  0.338** 

  (0.135)  (0.135) 



American Journal of Economies      

ISSN 2520 - 0453 (Online)   

Vol. 10, Issue 1, pp 1 - 51, 2026                                                             www.ajpojournals.org  

                                                                                                                                                                        

https://doi.org/10.47672/aje.2847                           29                                            Tounkara (2026) 

 

Constant 3.753*** -6.013*** 3.697*** -6.007*** 

 (0.0515) (0.681) (0.0514) (0.681) 

Demographic Household Characteristics  No Yes No Yes 

Household Wealth No Yes No Yes 

Farm Characteristics  No Yes No Yes 

Membership – Farmer Support Groups No Yes No Yes 

Peer Influence No Yes No Yes 

Observations 21800 21800 21800 21800 

Standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

5.2 Off-Farm Income Adjustment  

This subsection first considers the average treatment impact of extreme drought exposure on 

the off-farm income margin of adjustment. Thereafter, I examine the average differential 

impact of access to agricultural support and choice of adaptive strategy on the off-farm income 

behavioural response under average and extreme weather events. Column (1) of table 7 below 

shows a negative and highly statistically significant coefficient on the drought shock variable. 

However, conditioning on other relevant covariates, the preferred specification (2) reveals that 

the drought exposure coefficient loses statistical significance despite retaining the direction of 

impact. Further, the naïve specification (3) shows that the pre- and post-treatment coefficients 

are both negative and highly statistically significant. Likewise, the corresponding effect 

estimates in the preferred specification (4) retains the coefficient sign but becomes statistically 

insignificant. 

Additionally, specifications (2) and (4) both show noticeable positive time dummy coefficients, 

suggesting that households relatively earn higher off-farm incomes after the drought shock. 

This is indicative evidence that smallholder farmers generally participate more in off-farm 

income enterprises following the drought shock. Besides, under average weather conditions, 

specifications (2) and (4) both show that recipients of fertilizer-seed support and agricultural 

extension services relatively earn higher off-farm incomes while access to agricultural credit 

contributes to lower off-farm incomes in beneficiary farm households. The latter observation 

makes intuitive sense because beneficiaries of agricultural credit reallocate labour hours 

towards own-farm cropping activities. Furthermore, specifications (2) and (4) both show that 

the adoption of minimum soil disturbance and crop rotation contributes to lower off-farm 

incomes while adopters of crop residues, legume-intercropping, and soil moisture-enhancing 

measures experience the opposite impacts during average weather conditions. Thus, the choice 

of adaptive land investment appears to influence the amount of time smallholder farmers devote 

towards off-farm income enterprises. 

However, under extreme drought conditions, the impacts of agricultural support and adaptive 

strategies largely contrast that observed under regular weather conditions. Specifically, 

restricting the analysis to visible interaction coefficients, columns (2) and (4) both show that 

the coefficient on the interaction term between drought shock and agricultural credit is positive 

and highly statistically significant. This suggests that treatment beneficiaries of agricultural 

credit earn higher off-farm incomes relative to counterfactual households. Although this 

observation is counterintuitive, I theorize that treatment beneficiaries of agricultural credit 

boost their occupational diversity through income diversification to supplement agricultural 

loans, support agricultural investments, and minimize the variability of overall household 

incomes and consumption. Thus, I take this to be empirical support that access to agricultural 

credit improves occupational diversity and off-farm labour hours in treatment farm households. 
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Further, the interaction coefficient on the drought shock-crop rotation interaction term is 

positive and highly statistically significant in both columns (2) and (4). This suggests that 

treatment adopters of crop rotation relatively earn higher off-farm incomes than counterfactual 

households. This result is not surprising, and I hypothesize that treatment adopters of crop 

rotation strengthen their occupational diversity to earn additional incomes so that they can 

successfully sustain crop rotation cycles over a long period to significantly improve land 

productivity. Hence, I take this to be suggestive evidence that treated adopters of crop rotation 

respond to severe drought stresses by devoting more labour hours towards off-farm income 

enterprises. However, the results in columns (2) and (4) both show that treatment adopters of 

legume-intercropping, crop residues, and soil moisture-enhancing technologies accrue lower 

off-farm incomes than the control group. This, therefore, is indicative evidence that treatment 

adopters of suitable climate-smart agricultural practices reallocate labour away from off-farm 

income initiatives towards own-farm cropping activities. As a result, this lowers off-farm 

incomes and, to a large extent, associated occupational diversity. 

Table 7: Off-Farm Margin of Adjustment - Off-Farm Income 

Dependent Variable: ln (Off-Farm Income) Model 1 Model 2 

(1) (2) (3) (4) 

Drought Shock (1=Yes) -0.676*** -0.106   

 (0.134) (0.272)   

Pre-Treatment    -0.721*** -0.0252 

   (0.153) (0.299) 

Post-Treatment   -0.599*** -0.226 

   (0.178) (0.329) 

Time Dummy  0.600***  0.680*** 

  (0.180)  (0.219) 

Agricultural Support      

Fertilizer-Seed Support (1=Yes)  0.788***  0.792*** 

  (0.199)  (0.199) 

Agricultural Extension (1=Yes)  1.383***  1.381*** 

  (0.162)  (0.162) 

Agricultural Credit (1=Yes)  -0.747***  -0.742*** 

  (0.198)  (0.198) 

Choice of Adaptive Strategy      

Minimum Soil Disturbance (1=Yes)  -0.396***  -0.389** 

  (0.153)  (0.153) 

Crop Rotation (1=Yes)  -1.905***  -1.902*** 

  (0.162)  (0.162) 

Crop Residues – Soil (1=Yes)  0.986***  0.998*** 

  (0.150)  (0.151) 

Legume Intercropping (1=Yes)  0.601***  0.598*** 

  (0.206)  (0.206) 

Agroforestry (1=Yes)  -0.185  -0.230 

  (0.211)  (0.222) 

Irrigation (1=Yes)  -0.234  -0.239 

  (0.199)  (0.199) 

Animal Plant Manure (1=Yes)  -0.204  -0.202 

  (0.276)  (0.276) 

Soil Erosion Prevention Practices (1=Yes)  0.687***  0.683*** 

  (0.149)  (0.149) 

Extreme Drought Conditions – Interaction Terms      

Shock × Fertilizer-Seed Support   -0.493  -0.498 

  (0.325)  (0.325) 

Shock × Agricultural Extension  -0.357  -0.347 

  (0.267)  (0.268) 

Shock × Agricultural Credit  1.029***  1.019*** 



American Journal of Economies      

ISSN 2520 - 0453 (Online)   

Vol. 10, Issue 1, pp 1 - 51, 2026                                                             www.ajpojournals.org  

                                                                                                                                                                        

https://doi.org/10.47672/aje.2847                           31                                            Tounkara (2026) 

 

  (0.302)  (0.303) 

Shock × Minimum Soil Disturbance   -0.320  -0.342 

  (0.266)  (0.268) 

Shock × Crop Rotation  0.672**  0.647** 

  (0.282)  (0.284) 

Shock × Legume Intercropping  -1.910***  -1.896*** 

  (0.437)  (0.437) 

Shock × Crop Residues – Soil  -1.140***  -1.182*** 

  (0.248)  (0.256) 

Shock × Agroforestry  -0.0422  0.0684 

  (0.304)  (0.349) 

Shock × Irrigation  0.000284  0.00593 

  (0.304)  (0.304) 

Shock × Animal Plant Manure  0.583  0.579 

  (0.374)  (0.374) 

Shock × Soil Erosion Prevention Measures  -1.010***  -0.998*** 

  (0.260)  (0.261) 

Constant 7.376*** 9.638*** 7.402*** 9.602*** 

 (0.0700) (1.250) (0.0702) (1.251) 

Demographic Household Characteristics No Yes No Yes 

Household Wealth No Yes No Yes 

Farm Characteristics No Yes No Yes 

Membership – Farmer Support Groups No Yes No Yes 

Peer Influence No Yes No Yes 

Observations 21800 21800 21800 21800 

Standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

5.3 Robustness Checks  

One of the major concerns that may be tabled against the results presented in the previous 

sections is that the CRE model does not completely control for all the unobserved heterogeneity 

that stems from unobserved time-invariant household-level factors. Furthermore, there may be 

fears that the observable correlations between the outcomes and covariates of interest are driven 

by village-level factors and other regional, national, or environmental-level characteristics. As 

such, the Fixed Effects (FE) estimation method can be considered to be a suitable alternative 

estimation strategy that can circumvent and allay a lot of such concerns because of its ability 

to significantly account for, among other advantages, unobserved heterogeneity. Besides this, 

it also imperative to check whether the main CRE tobit results that exploits the panel structure 

of the dataset are robust to other estimation approaches such as the pooled Ordinary Least 

Squares (OLS), Random Effects (RE), and pooled CRE tobit. 

Thus, I explore the sensitivity of the results presented in the main analysis section by; (i) re-

estimating the main CRE results using alternative estimation frameworks; (ii) conducting a 

subsample re-analysis of the main CRE results using alternative estimation strategies; and (iii) 

using the El Niño Impact Assessment Survey (ENIAS) data to construct a unique alternate 

panel dataset and thereafter applying alternative estimation techniques to replicate the main 

CRE results. Due to space constraints, note that the results I reproduce and present in the 

ensuing subsections are derived from model 1 – i.e., equation (3). Further to this, I report only 

the replicated results obtained from the FE estimation technique while the re-estimated results 

from other estimation approaches are shown in appendix B. Besides, note that I cluster the 

standard errors at the unit of analysis (i.e., household-level) across all the reproduced 

specifications. 
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5.3.1 Robustness to Alternative Estimation Strategies  

In this section, I re-estimate the main CRE tobit results using the FE estimation approach to 

completely control for all unobserved time-constant omitted variables that may potentially 

affect the correlation between the dependent and independent variables of interest. The 

replicated FE results displayed in table 8 below show that the impacts of agricultural support 

and adaptive strategies on treatment farm households’ behavioural responses are mostly 

consistent with the main CRE results because the direction of impact and statistical significance 

remain largely unchanged across the re-estimated specifications. Similarly, the replicated 

results derived from the RE, pooled OLS, and pooled CRE tobit estimation strategies show that 

behavioural responses of treatment smallholder farmers remain largely intact. However, what 

is strikingly noticeable and interesting is that replicating the main CRE results using the RE 

and pooled OLS models both duplicates the FE estimates. This observation is consistent with 

the theoretical proposition that applying the pooled OLS and RE models to the CRE equation 

reproduces the FE estimator (Wooldridge, 2019; Yang, 2022). Thus, I only show the replicated 

pooled CRE tobit results in table B.1 in the appendix. By extension, subsequent sensitivity 

checks also re-estimates the main results using the FE and pooled CRE tobit estimation 

methods. Overall, there is strong evidence showing that the main CRE tobit results are robust 

to alternative estimation strategies, and thus, the key insights and conclusions derived from the 

main analysis remain largely unaffected. 

Table 8: Robustness to Alternative Estimation Method – Fixed Effects (FE) 

 Model 1 Model 1 Model 1 Model 1 Model 1 

 Crop 

Diversification 

Cropland 

Adjustment 

Seed 

Uptake 

Fertilizer 

Utilization 

Off-

Farm 

Income 

Drought Shock (1=Yes) -0.0192** 0.104*** 0.592*** 0.140 -0.113 

 (0.00886) (0.0197) (0.0428) (0.0926) (0.209) 

Time Dummy 0.0183*** 0.118*** 0.118*** 0.838*** 0.0976 

 (0.00562) (0.0136) (0.0275) (0.0612) (0.135) 

Agricultural Support       

Fertilizer-Seed Support (1=Yes) -0.0144** 0.0184 -0.168*** 2.015*** 0.798*** 

 (0.00649) (0.0148) (0.0353) (0.0774) (0.162) 

Agricultural Extension (1=Yes) 0.00749 0.0430*** 0.158*** 0.204*** 1.351*** 

 (0.00501) (0.0122) (0.0244) (0.0536) (0.130) 

Agricultural Credit (1=Yes) 0.0854*** 0.172*** 0.0547** 0.193*** -0.661** 

 (0.00557) (0.0145) (0.0276) (0.0658) (0.156) 

Choice of Adaptive Strategy       

Minimum Soil Disturbance (1=Yes) 0.0686*** -0.0127 0.223*** 0.492*** -0.493** 

 (0.00485) (0.0113) (0.0247) (0.0516) (0.123) 

Crop Rotation (1=Yes) 0.0994*** 0.0714*** 0.0847*** 0.319*** -1.711** 

 (0.00482) (0.0121) (0.0240) (0.0535) (0.130) 

Crop Residues – Soil (1=Yes) 0.0269*** 0.00723 0.00644 0.0469 0.856*** 

 (0.00475) (0.0110) (0.0240) (0.0500) (0.119) 

Legume Intercropping (1=Yes) 0.0256*** -0.0480*** -0.0845** -0.325*** 0.474*** 

 (0.00655) (0.0148) (0.0327) (0.0681) (0.159) 

Agroforestry (1=Yes) 0.0335*** 0.0270* 0.0240 -0.0529 -0.169 

 (0.00644) (0.0152) (0.0313) (0.0706) (0.152) 

Irrigation (1=Yes) 0.0113* -0.0420*** 0.109*** 0.384*** -0.146 

 (0.00592) (0.0148) (0.0295) (0.0664) (0.157) 

Animal Plant Manure (1=Yes) 0.000726 0.0109 0.0335 -0.0280 -0.239 

 (0.00842) (0.0221) (0.0394) (0.0922) (0.222) 

Soil Erosion Prevention Practices 

(1=Yes) 

0.0204*** -0.0248** -0.00729 0.0196 0.513*** 

 (0.00464) (0.0108) (0.0235) (0.0494) (0.118) 
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Extreme Drought Conditions – 

Interaction Terms  

     

Shock × Fertilizer-Seed Support  0.0184* 0.0583** 0.321*** 1.060*** -0.427* 

 (0.0101) (0.0238) (0.0482) (0.124) (0.257) 

Shock × Agricultural Extension 0.00504 -0.0239 -0.0320 -0.285*** -0.327 

 (0.00816) (0.0198) (0.0375) (0.0897) (0.213) 

Shock × Agricultural Credit 0.0583*** -0.105*** -0.183*** -0.636*** 0.919*** 

 (0.00852) (0.0212) (0.0383) (0.0997) (0.236) 

Shock × Minimum Soil Disturbance  -0.0406*** -0.0362* -0.284*** -0.501*** -0.374* 

 (0.00805) (0.0192) (0.0367) (0.0892) (0.199) 

Shock × Crop Rotation -0.0232*** -0.0870*** -0.123*** 0.0211 0.440** 

 (0.00828) (0.0203) (0.0368) (0.0963) (0.215) 

Shock × Legume Intercropping -0.0234 0.0482 -0.200*** -0.362** -1.607** 

 (0.0145) (0.0335) (0.0615) (0.151) (0.330) 

Shock × Crop Residues – Soil -0.0292*** 0.00892 0.145*** 0.379*** -0.932** 

 (0.00762) (0.0184) (0.0363) (0.0849) (0.191) 

Shock × Agroforestry -0.0200** -0.0512** -0.00326 -0.195* -0.110 

 (0.00915) (0.0220) (0.0404) (0.103) (0.222) 

Shock × Irrigation 0.00207 0.0109 -0.135*** -0.126 -0.00788 

 (0.00933) (0.0226) (0.0429) (0.105) (0.235) 

Shock × Animal Plant Manure 0.00354 -0.0307 -0.0497 0.281** 0.527* 

 (0.0113) (0.0293) (0.0519) (0.126) (0.292) 

Shock × Soil Erosion Prevention 

Measures 

0.00264 -0.000106 0.0753** 0.173** -0.778** 

 (0.00790) (0.0192) (0.0367) (0.0879) (0.201) 

Constant 0.120*** -0.718*** 0.515*** -0.295 8.449*** 

 (0.0321) (0.0715) (0.152) (0.339) (0.817) 

Demographic Household 

Characteristics 

Yes Yes Yes Yes Yes 

Household Wealth Yes Yes Yes Yes Yes 

Farm Characteristics Yes Yes Yes Yes Yes 

Membership – Farmer Support 

Groups  

Yes Yes Yes Yes Yes 

Peer Influence Yes Yes Yes Yes Yes 

Observations 21800 21800 21800 21800 21800 

Cluster-robust standard errors in parentheses 

   * p<0.1, ** p<0.05, *** p<0.01 

5.3.2 Robustness to Sample Size Adjustments: Subsample Analysis 

Further, I also conduct a subsample re-analysis of the main CRE tobit results using the FE and 

pooled CRE tobit estimation strategies. Specifically, I derive a subsample by dropping all the 

observations from the 2012 RALS so that the resulting subsample panel dataset consists of the 

most recent two waves on either side of the drought shock (i.e., conducted just before and after 

the drought). As can be seen in table 9 below, the replicated FE results remain largely 

unchanged with respect to the sign and statistical significance of the main variables of interest, 

although the absolute magnitude of some coefficients are either slightly or considerably 

different from those observed in the main analysis section. Similarly, the pooled CRE tobit 

results (shown in the appendix – i.e., table B.2) remain largely intact. Overall, the main CRE 

tobit estimates are largely consistent and robust to both sample size restrictions/changes and 

alternative estimation strategies. 
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Table 9: Robustness to Sample Size Adjustments (Subsample Analysis) and Alternative 

Estimation Method - FE 

 Model 1 Model 1 Model 1 Model 1 Model 1 

 Crop 

Diversification 

Cropland 

Adjustment  

Seed 

Uptake 

Fertilizer 

Utilization 

Off-

Farm 

Income 

Drought Shock (1=Yes) -0.0310*** 0.0527** 0.348*** 0.140 -0.0624 

 (0.0118) (0.0260) (0.0540) (0.122) (0.204) 

Time Dummy 0.0439*** 0.123*** 0.189*** 0.619*** 1.912*** 

 (0.00734) (0.0175) (0.0349) (0.0785) (0.138) 

Agricultural Support       

Fertilizer-Seed Support (1=Yes) 0.0337*** 0.0660*** 0.222*** 2.550*** -0.116 

 (0.00888) (0.0217) (0.0414) (0.101) (0.166) 

Agricultural Extension (1=Yes) -0.0122* 0.0143 0.0600* 0.123* 0.138 

 (0.00708) (0.0171) (0.0327) (0.0741) (0.133) 

Agricultural Credit (1=Yes) 0.0711*** 0.140*** 0.0514 0.225*** -0.345** 

 (0.00734) (0.0183) (0.0358) (0.0859) (0.150) 

Choice of Adaptive Strategy       

Minimum Soil Disturbance (1=Yes) 0.0735*** -0.0296* 0.258*** 0.399*** 0.181 

 (0.00665) (0.0157) (0.0330) (0.0701) (0.122) 

Crop Rotation (1=Yes) 0.102*** 0.0857*** 0.134*** 0.262*** -0.214 

 (0.00675) (0.0163) (0.0326) (0.0728) (0.134) 

Crop Residues – Soil (1=Yes) 0.0225*** 0.0246 -0.0176 0.113* 0.371*** 

 (0.00640) (0.0152) (0.0312) (0.0669) (0.119) 

Legume Intercropping (1=Yes) -0.0251*** -0.0865*** -0.214** -0.143 0.359** 

 (0.00859) (0.0207) (0.0404) (0.0897) (0.158) 

Agroforestry (1=Yes) 0.0331*** 0.0612*** 0.0459 0.0956 -0.157 

 (0.00756) (0.0179) (0.0359) (0.0829) (0.142) 

Irrigation (1=Yes) -0.00101 -0.0562*** 0.142*** 0.489*** -0.238 

 (0.00780) (0.0193) (0.0383) (0.0856) (0.150) 

Animal Plant Manure (1=Yes) -0.00342 0.0292 0.0494 -0.251** -0.0350 

 (0.0110) (0.0283) (0.0507) (0.117) (0.221) 

Soil Erosion Prevention Practices 

(1=Yes) 

0.0373*** 0.00278 -0.0105 0.0790 0.215* 

 (0.00619) (0.0145) (0.0302) (0.0655) (0.117) 

Extreme Drought Conditions – 

Interaction Terms  

     

Shock × Fertilizer-Seed Support  -0.0199 -0.0131 -0.0756 0.406** -0.0157 

 (0.0135) (0.0324) (0.0617) (0.165) (0.257) 

Shock × Agricultural Extension 0.00740 0.0125 0.0397 -0.206* 0.133 

 (0.0112) (0.0270) (0.0504) (0.123) (0.209) 

Shock × Agricultural Credit 0.0691*** -0.0855*** -0.183** -0.589*** 0.401* 

 (0.0113) (0.0281) (0.0509) (0.135) (0.235) 

Shock × Minimum Soil Disturbance  -0.0427*** -0.0263 -0.217** -0.421*** 0.213 

 (0.0103) (0.0247) (0.0472) (0.114) (0.194) 

Shock × Crop Rotation -0.0159 -0.0673*** -0.0446 0.0928 0.340 

 (0.0108) (0.0255) (0.0484) (0.122) (0.211) 

Shock × Legume Intercropping 0.0204 0.0560 -0.0569 -0.444** -0.835** 

 (0.0179) (0.0408) (0.0734) (0.183) (0.319) 

Shock × Crop Residues – Soil -0.0369*** -0.00892 0.203*** 0.250** -0.217 

 (0.0102) (0.0244) (0.0468) (0.113) (0.193) 

Shock × Agroforestry 0.00395 -0.0575** 0.00964 -0.236* 0.0775 

 (0.0114) (0.0267) (0.0504) (0.127) (0.212) 

Shock × Irrigation 0.00750 0.0434 -0.169** -0.393*** -0.102 

 (0.0123) (0.0300) (0.0559) (0.137) (0.231) 

Shock × Animal Plant Manure 0.000412 -0.0568 -0.0213 0.518*** -0.0167 

 (0.0147) (0.0373) (0.0669) (0.160) (0.287) 

Shock × Soil Erosion Prevention -0.0234** -0.0124 0.125*** 0.204* -0.323 
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Measures 

 (0.0105) (0.0252) (0.0486) (0.119) (0.198) 

Constant 0.125*** -0.550*** 0.777*** 0.479 6.160*** 

 (0.0439) (0.0990) (0.201) (0.463) (0.815) 

Demographic Household 

Characteristics 

Yes Yes Yes Yes Yes 

Household Wealth Yes Yes Yes Yes Yes 

Farm Characteristics Yes Yes Yes Yes Yes 

Membership – Farmer Support 

Groups  

Yes Yes Yes Yes Yes 

Peer Influence Yes Yes Yes Yes Yes 

Observations  15175 15175 15175 15175 15175 

Cluster-robust standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

5.3.3 Robustness to Alternate Dataset  

Other than the above robustness checks, I also explore the sensitivity of the main CRE tobit 

results to alternative subsample panel dataset. Particularly, I utilize the 2016 El Niño Impact 

Assessment Survey (ENIAS) data to construct a unique panel dataset and subsequently 

replicate the main CRE tobit results using both the FE and pooled CRE tobit estimation 

approaches. The 2016 ENIAS was implemented as a subset of the 2015 RALS by the Indaba 

Agricultural Policy Research Institute (IAPRI) to primarily assess the impacts of extreme 

aridity conditions on rural household welfare. However, the survey also collected other relevant 

data on productive and off-farm behavioural responses that I exploit to check the sensitivity of 

the main results. Thus, similar to the approach taken in studies such as Alfani et al. (2021) and 

McCarthy et al. (2021), I track smallholder farmers captured in the 2016 ENIAS backwards to 

the 2015 and 2012 RALS. Thereafter, I also trace these ENIAS farm households forward in the 

latest 2019 RALS to form a unique long panel subsample dataset comprising four waves (i.e., 

2012, 2015, 2016, and 2019) and at least 5,200 observations. 

Table 10 below reports selected results of four behavioural responses to extreme drought 

exposure, and we can see that the replicated FE results closely align with the main CRE tobit 

results in terms of both the direction of impact and statistical significance of the estimated 

regression coefficients. Similarly, the estimated pooled CRE tobit results (shown in table B.3 

in the appendix) are also largely consistent with the main CRE results with respect to the sign 

and statistical significance of the estimates, although the effect sizes are relatively slightly 

different for some coefficients. Overall, the replicated results remain largely intact and hence, 

the core CRE tobit estimates are simultaneously robust to different estimation methods, 

alternative subsample dataset, and sample size adjustments. 
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Table 10: Robustness to Alternate Dataset, Sample Size Restrictions, and Alternative 

Estimation Method - FE 

 Model 1 Model 1 Model 1 Model 1 

 Crop 

Diversification 

Cropland 

Adjustment 

Seed 

Uptake 

Off-Farm 

Income 

Drought Shock (1=Yes) -0.0188** 0.106*** 0.619*** -0.247 

 (0.00831) (0.0186) (0.0398) (0.200) 

Time Dummy 0.0118** 0.113*** 0.104*** -0.0691 

 (0.00531) (0.0129) (0.0261) (0.130) 

Agricultural Support      

Fertilizer-Seed Support (1=Yes) -0.0226*** 0.00391 -0.271*** 0.822*** 

 (0.00589) (0.0137) (0.0328) (0.152) 

Agricultural Extension (1=Yes) 0.0127*** 0.0501*** 0.177*** 1.395*** 

 (0.00468) (0.0114) (0.0229) (0.123) 

Agricultural Credit (1=Yes) 0.0849*** 0.171*** 0.0601** -0.684*** 

 (0.00535) (0.0137) (0.0260) (0.151) 

Choice of Adaptive Strategy      

Minimum Soil Disturbance (1=Yes) 0.0702*** -0.00855 0.223*** -0.614*** 

 (0.00451) (0.0105) (0.0229) (0.117) 

Crop Rotation (1=Yes) 0.0978*** 0.0699*** 0.0718*** -1.801*** 

 (0.00451) (0.0113) (0.0223) (0.124) 

Crop Residues – Soil (1=Yes) 0.0295*** 0.00255 0.0216 0.884*** 

 (0.00442) (0.0102) (0.0224) (0.113) 

Legume Intercropping (1=Yes) 0.0300*** -0.0415*** -0.0489 0.391** 

 (0.00615) (0.0139) (0.0306) (0.154) 

Agroforestry (1=Yes) 0.0380*** 0.0222 0.0159 -0.224 

 (0.00619) (0.0147) (0.0303) (0.148) 

Irrigation (1=Yes) 0.00630 -0.0407*** 0.0947*** -0.216 

 (0.00557) (0.0139) (0.0280) (0.151) 

Animal Plant Manure (1=Yes) -0.000587 0.0112 0.0368 -0.216 

 (0.00795) (0.0209) (0.0372) (0.218) 

Soil Erosion Prevention Practices 

(1=Yes) 

0.0261*** -0.0212** 0.0101 0.421*** 

 (0.00433) (0.0101) (0.0221) (0.113) 

Extreme Drought Conditions – 

Interaction Terms  

    

Shock × Fertilizer-Seed Support  0.0157* 0.0736*** 0.376*** -0.382 

 (0.00933) (0.0223) (0.0453) (0.245) 

Shock × Agricultural Extension 0.00244 -0.0336* -0.0709** -0.409** 

 (0.00771) (0.0185) (0.0352) (0.203) 

Shock × Agricultural Credit 0.0558*** -0.0981*** -0.169*** 0.955*** 

 (0.00810) (0.0201) (0.0362) (0.230) 

Shock × Minimum Soil Disturbance  -0.0393*** -0.0452** -0.294*** -0.478** 

 (0.00763) (0.0181) (0.0346) (0.193) 

Shock × Crop Rotation -0.0198** -0.0861*** -0.115*** 0.476** 

 (0.00787) (0.0193) (0.0347) (0.209) 

Shock × Legume Intercropping -0.0218 0.0350 -0.225*** -1.560*** 

 (0.0139) (0.0318) (0.0582) (0.321) 

Shock × Crop Residues – Soil -0.0309*** 0.0107 0.117*** -0.948*** 

 (0.00717) (0.0173) (0.0339) (0.184) 

Shock × Agroforestry -0.0231*** -0.0449** 0.0237 -0.0298 

 (0.00875) (0.0212) (0.0388) (0.216) 

Shock × Irrigation 0.0104 0.00585 -0.133*** 0.0606 

 (0.00880) (0.0213) (0.0405) (0.227) 

Shock × Animal Plant Manure 0.00447 -0.0270 -0.0539 0.551* 

 (0.0108) (0.0278) (0.0494) (0.285) 

Shock × Soil Erosion Prevention 

Measures 

-0.000606 -0.00525 0.0492 -0.829*** 
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 (0.00751) (0.0180) (0.0345) (0.194) 

Constant 0.105*** -0.773*** 0.467*** 10.57*** 

 (0.0296) (0.0659) (0.140) (0.770) 

Demographic Household Characteristics Yes Yes Yes Yes 

Household Wealth Yes Yes Yes Yes 

Farm Characteristics Yes Yes Yes Yes 

Membership – Farmer Support Groups  Yes Yes Yes Yes 

Peer Influence Yes Yes Yes Yes 

Observations 5243 5243 5243 5243 

Cluster-robust standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

5.4 Study Implications  

This study highlights key policy implications for building climate resilience. Firstly, there is 

need for policymakers to facilitate the rapid distribution of improved seed technologies, input 

subsidies, and irrigation facilities in regions prone to extreme weather conditions. Secondly, 

the governments world-over should consider investing substantially in early warning systems 

for natural disasters to minimise the negative welfare effects. Thirdly, policymakers should 

lead in disseminating climate information, enhancing agricultural extension services, and 

promoting climate technologies to reduce undesirable welfare impacts of climatic variability. 

Last but not least, promoting farm diversification, exempting critical farm implements like 

irrigation equipment from taxes, improving access to agricultural finance, offering tax 

incentives to households adopting climate-resilient practices, and discouraging land 

degradation are critical to strengthening long-term adaptive capacity. 

6.0 CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

This study conducts a comparative assessment that explores whether access to agricultural 

support and choice of adaptive strategy influence on-farm and off-farm behavioural responses 

of drought-exposed households differently vis-à-vis the counterfactual group using a relevant 

SSA context. A matched CRE model is used to exploit regional variations in drought exposure 

conditions and generate reliable causal estimates. Compared to counterfactual group 

households, the results show, for the most part, that access to agricultural support plays an 

instrumental role in strengthening treated smallholder farmers’ adaptive capacity. Particularly, 

the findings show that treated beneficiaries of agricultural support mostly respond to 

precipitation shortfalls by adopting polyculture agricultural systems, expanding croplands and 

agricultural input uptake, and earning higher off-farm incomes. Contrariwise, the choice of 

adaptive strategy appears to largely stimulate contrasting impacts, with results showing that 

adopters tilt crop production towards reduced crop diversity and/or monoculture agricultural 

systems, reduce hectarage shares and agricultural input consumption, and earn lower off-farm 

incomes in response to severe water stress conditions. Taken together, this suggests that 

drought-exposed adopters are relatively more susceptible to climate-related risks over the 

medium to long-term period. 

Additionally, I also obtain further insights into the extent of autonomous adaptation by 

conducting a disaggregated analysis that compares behavioural responses of treated farm 

households relative to control group households both before and after the drought shock. For 

example, relative to the pre-exposure period, the estimated results show strong empirical 

support that drought-exposed smallholder farmers lower their consumption of inorganic 

fertilizers post-drought exposure. Moreover, the results also show that although treatment farm 
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households expand croplands and boost their seed uptake after the drought shock, the increase 

is relatively lower than that of the corresponding pre-treatment period. Collectively, this is 

suggestive evidence that extreme drought exposure stimulates a dissuading effect that 

discourages treatment smallholder farmers from expanding their croplands and seed 

consumption to pre-drought exposure levels. 

The results of this study present a first attempt at highlighting the importance of agricultural 

policy in influencing behavioural responses of drought-hit farm households. Without 

agricultural support, the regression estimates suggest that smallholder farmers’ short-term 

responses to severe drought conditions amplifies their vulnerability to future climate-related 

risks.  

6.2 Recommendation 

Overall, the estimated regression results provide at least two critical implications: Firstly, 

variations in agroclimatic conditions significantly impact the effectiveness of agricultural 

policy components (such as fertilizer-seed support, agricultural credit, and extension services) 

in shaping the extent and nature of smallholder farmers’ behavioural responses to extreme 

weather conditions. Secondly, access to agricultural support and the choice of adaptive strategy 

can influence the behavioural response strategies of treatment farm households in a way that 

strengthens their climate resilience. Besides this, the availability of agricultural finance and 

agricultural extension services can allow farm households in regions predisposed to severe 

drought stressors to not only adjust crop management strategies but also invest in climate-smart 

agricultural technologies that are suitable to localized weather characteristics. Therefore, given 

the varied impacts of agricultural support, the results of this study are of paramount importance 

in growing the evidence-base that can be useful in localizing agricultural support, policies, and 

identifying appropriate conservation farming techniques that positively influence smallholder 

farmers’ behavioural responses to unfavourable weather anomalies. This, in turn, will improve 

the overall adaptive capacity of rural agricultural communities to climatic variability and 

change. 
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Appendix A: Description of Variables   

Table A.1: Description of Variables 

Variable Name Variable Description Measurement Unit 

Dependent 

Variables 
  

Crop 

diversification  

The cultivation of different crop types or consumption 

of different seed varieties of the same crop type during 

the cropping season. 

Simpson Index of 

Diversification (SID) - ranges 

between 0 and 1. 

Cropland share 

The total cropping or cultivated area (in hectares) at the 

location of the smallholder farmer – used as a proxy for 

land use. 

Hectares (ha) 

Seed uptake  

The total quantity of seed varieties (in kg) consumed 

during the growing season at the location of the 

smallholder farmer. 

Kilograms (kg) 

Fertilizer 

utilization 

The total quantity (in kg) of basal and top-dressing 

chemical fertilizer used during the growing season at the 

location of the smallholder farmer. 

Kilograms (kg) 

Off-farm income 

The total wage/income paid in cash or in-kind accruing 

to labour supplied either formally or informally to the 

agriculture and non-agriculture sectors – note that 

included in this definition are remittances in the form of 

pensions that are disbursed to farm households. 

ZMW (K) – i.e., denotes 

Zambia's currency "Kwacha". 

Independent 

Variables  
 

Age  The age of the household head. Years 

Gender  Sex of the household head. 
Dummy: 1=male and 

0=female 

Education  
The highest level of formal education for the household 

head. 
Years 

Marital status  Marital status of the household head. 
Dummy: 1=married and 

0=otherwise 

Household size  The number of persons in the household. 
Number of household 

members  

Farmer support 

groups  

Membership to farmer support groups such as 

agricultural cooperative societies, savings and loan 

groups, and women’s groups.  

Dummy: 1=yes and 0=no 

Peer influence 
The smallholder farmer received advice from fellow 

farmers, friends, or relatives. 
Dummy: 1=yes and 0=no 

Farm 

characteristics  

This captures different farm implements and other 

related farm attributes that influence productive 

behavioural responses. 

Number of farm implements.  

Household 

wealth  

The total value of household assets – used as a proxy for 

household wealth. 

ZMW (K) – i.e., denotes 

Zambia's currency "Kwacha". 

Agricultural 

support 

The smallholder farmer accessed fertilizer-seed support, 

agricultural extension services, and/or agricultural 

credit.   

Dummy: 1=yes and 0=no 

Adaptive land 

strategy 

The smallholder farmer adopts adaptive land 

investments such as crop rotation, minimum tillage, 

intercropping, ridging, agroforestry, irrigation, and soil 

erosion prevention measures. 

Dummy: 1=yes and 0=no 
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Appendix B: Additional Robustness Results  

Table B.1: Robustness to Alternative Estimation Method - Pooled Correlated Random 

Effects (CRE) 

 Model 1 Model 1 Model 1 Model 1 Model 1 

 Crop 

Diversification 

Cropland 

Adjustment 

Seed 

Utilization 

Fertilizer 

Use 

Off-

Farm 

Income 

Drought Shock (1=Yes) -0.0204* 0.110*** 0.637*** 0.0399 -0.106 

 (0.0117) (0.0204) (0.0461) (0.163) (0.266) 

Time Dummy 0.0230*** 0.105*** 0.105*** 1.190*** 0.600*** 

 (0.00705) (0.0138) (0.0289) (0.0943) (0.175) 

Agricultural Support      

Fertilizer-Seed Support (1=Yes) -0.0240*** 0.0159 -0.199*** 2.716*** 0.788*** 

 (0.00826) (0.0151) (0.0377) (0.112) (0.206) 

Agricultural Extension (1=Yes) 0.00806 0.0407*** 0.161*** 0.266*** 1.383*** 

 (0.00617) (0.0124) (0.0254) (0.0777) (0.165) 

Agricultural Credit (1=Yes) 0.0969*** 0.169*** 0.0541* 0.288*** -0.747** 

 (0.00671) (0.0146) (0.0285) (0.0947) (0.200) 

Choice of Adaptive Strategy      

Minimum Soil Disturbance (1=Yes) 0.0868*** -0.00561 0.246*** 0.786*** -0.396** 

 (0.00607) (0.0114) (0.0258) (0.0788) (0.156) 

Crop Rotation (1=Yes) 0.118*** 0.0620*** 0.0761*** 0.377*** -1.905** 

 (0.00582) (0.0122) (0.0248) (0.0782) (0.167) 

Crop Residues – Soil (1=Yes) 0.0350*** 0.0117 0.0122 0.1000 0.986*** 

 (0.00590) (0.0111) (0.0250) (0.0758) (0.151) 

Legume Intercropping (1=Yes) 0.0308*** -0.0534*** -0.0821** -0.521** 0.601*** 

 (0.00797) (0.0149) (0.0338) (0.107) (0.202) 

Agroforestry (1=Yes) 0.0420*** 0.0349** 0.0329 -0.0374 -0.185 

 (0.00788) (0.0154) (0.0325) (0.104) (0.196) 

Irrigation (1=Yes) 0.0121* -0.0465*** 0.111*** 0.564*** -0.234 

 (0.00724) (0.0150) (0.0307) (0.0965) (0.200) 

Animal Plant Manure (1=Yes) 0.00376 0.0129 0.0398 -0.0529 -0.204 

 (0.0102) (0.0222) (0.0405) (0.133) (0.283) 

Soil Erosion Prevention Practices 

(1=Yes) 

0.0260*** -0.0237** -0.0101 0.0388 0.687*** 

 (0.00574) (0.0109) (0.0245) (0.0741) (0.150) 

Extreme Drought Conditions – 

Interaction Terms  

     

Shock × Fertilizer-Seed Support  0.0323** 0.0573** 0.348*** 1.484*** -0.493 

 (0.0127) (0.0243) (0.0511) (0.185) (0.328) 

Shock × Agricultural Extension 0.00747 -0.0186 -0.0306 -0.323** -0.357 

 (0.0102) (0.0200) (0.0391) (0.138) (0.271) 

Shock × Agricultural Credit 0.0700*** -0.106*** -0.193*** -0.753** 1.029*** 

 (0.0103) (0.0215) (0.0399) (0.151) (0.304) 

Shock × Minimum Soil Disturbance  -0.0509*** -0.0396** -0.302*** -

0.831*** 

-0.320 

 (0.00998) (0.0194) (0.0382) (0.141) (0.255) 

Shock × Crop Rotation -0.0201** -0.0870*** -0.130*** 0.0804 0.672** 

 (0.0101) (0.0204) (0.0380) (0.146) (0.278) 

Shock × Legume Intercropping -0.0317* 0.0515 -0.210*** -0.640** -1.910** 

 (0.0182) (0.0337) (0.0636) (0.254) (0.432) 

Shock × Crop Residues – Soil -0.0349*** 0.0160 0.153*** 0.590*** -

1.140*** 

 (0.00957) (0.0187) (0.0380) (0.135) (0.245) 

Shock × Agroforestry -0.0262** -0.0482** -0.00379 -0.230 -0.0422 

 (0.0113) (0.0222) (0.0418) (0.156) (0.287) 

Shock × Irrigation 0.00137 0.00934 -0.143*** -0.117 0.000284 
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 (0.0116) (0.0229) (0.0446) (0.160) (0.301) 

Shock × Animal Plant Manure 0.00154 -0.0338 -0.0576 0.489*** 0.583 

 (0.0139) (0.0295) (0.0536) (0.189) (0.373) 

Shock × Soil Erosion Prevention 

Measures 

0.00421 0.00222 0.0836** 0.251* -1.010** 

 (0.00982) (0.0193) (0.0382) (0.136) (0.257) 

Constant 0.173*** -0.731*** 0.916*** -6.014** 9.638*** 

 (0.0520) (0.0952) (0.212) (0.686) (1.249) 

Demographic Household 

Characteristics 

Yes Yes Yes Yes Yes 

Household Wealth Yes Yes Yes Yes Yes 

Farm Characteristics Yes Yes Yes Yes Yes 

Membership – Farmer Support 

Groups  

Yes Yes Yes Yes Yes 

Peer Influence Yes Yes Yes Yes Yes 

Observations 21800 21800 21800 21800 21800 

Standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

Table B.2: Robustness to Sample Size Adjustments (Subsample Analysis) and 

Alternative Estimation Method – Pooled CRE 

 Model 1 Model 1 Model 1 Model 1 Model 1 

 Crop 

Diversification 

Cropland 

Adjustment 

Seed 

Use 

Fertilizer 

Utilization 

Off-Farm 

Income 

Drought Shock (1=Yes) -0.0375*** 0.0681*** 0.449*** -0.127 -0.227 

 (0.0136) (0.0244) (0.0532) (0.183) (0.225) 

Time Dummy 0.0525*** 0.112*** 0.186*** 1.016*** 2.093*** 

 (0.00841) (0.0166) (0.0346) (0.109) (0.158) 

Agricultural Support       

Fertilizer-Seed Support (1=Yes) 0.0401*** 0.0701*** 0.257*** 3.281*** 0.0473 

 (0.00932) (0.0187) (0.0377) (0.126) (0.180) 

Agricultural Extension (1=Yes) -0.0135* 0.0314** 0.0656** 0.128 0.204 

 (0.00744) (0.0153) (0.0307) (0.0904) (0.147) 

Agricultural Credit (1=Yes) 0.0755*** 0.135*** 0.0630* 0.448*** -0.286* 

 (0.00759) (0.0168) (0.0330) (0.108) (0.170) 

Choice of Adaptive Strategy       

Minimum Soil Disturbance 

(1=Yes) 

0.102*** -0.0229* 0.255*** 0.618*** 0.147 

 (0.00724) (0.0139) (0.0312) (0.0914) (0.134) 

Crop Rotation (1=Yes) 0.119*** 0.0656*** 0.149*** 0.398*** -0.418** 

 (0.00705) (0.0148) (0.0305) (0.0925) (0.146) 

Crop Residues – Soil (1=Yes) 0.0318*** 0.0301** -0.0368 0.148* 0.474*** 

 (0.00679) (0.0133) (0.0291) (0.0864) (0.130) 

Legume Intercropping (1=Yes) -0.0178* -0.0800*** -

0.205*** 

-0.327*** 0.258 

 (0.00922) (0.0182) (0.0379) (0.119) (0.173) 

Agroforestry (1=Yes) 0.0355*** 0.0521*** 0.0547 0.0754 -0.210 

 (0.00861) (0.0172) (0.0358) (0.114) (0.168) 

Irrigation (1=Yes) -0.00523 -0.0593*** 0.146*** 0.610*** -0.210 

 (0.00840) (0.0177) (0.0358) (0.108) (0.167) 

Animal Plant Manure (1=Yes) -0.00436 0.0247 0.0647 -0.447*** 0.0362 

 (0.0117) (0.0257) (0.0463) (0.150) (0.245) 

Soil Erosion Prevention Practices 

(1=Yes) 

0.0402*** -0.0111 -0.0346 0.0535 0.346*** 

 (0.00661) (0.0130) (0.0284) (0.0850) (0.128) 

Extreme Drought Conditions – 

Interaction Terms  
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Shock × Fertilizer-Seed Support  -0.0172 -0.0153 -0.0952* 0.587*** -0.00935 

 (0.0144) (0.0291) (0.0558) (0.213) (0.280) 

Shock × Agricultural Extension 0.00166 -0.00838 0.0142 -0.245 0.145 

 (0.0120) (0.0242) (0.0462) (0.158) (0.231) 

Shock × Agricultural Credit 0.0763*** -0.0844*** -

0.169*** 

-0.593*** 0.365 

 (0.0118) (0.0251) (0.0464) (0.175) (0.259) 

Shock × Minimum Soil 

Disturbance  

-0.0593*** -0.0196 -0.212** -0.531*** 0.354 

 (0.0114) (0.0228) (0.0447) (0.159) (0.217) 

Shock × Crop Rotation -0.00985 -0.0498** -0.0806* 0.253 0.504** 

 (0.0117) (0.0237) (0.0450) (0.165) (0.237) 

Shock × Legume Intercropping 0.00217 0.0705* -0.0474 -0.571** -0.895** 

 (0.0207) (0.0386) (0.0718) (0.274) (0.372) 

Shock × Crop Residues – Soil -0.0382*** -0.0202 0.164*** 0.290* -0.251 

 (0.0112) (0.0221) (0.0443) (0.152) (0.212) 

Shock × Agroforestry 0.00745 -0.0384 0.0163 -0.194 0.191 

 (0.0128) (0.0253) (0.0482) (0.176) (0.248) 

Shock × Irrigation 0.0124 0.0242 -

0.186*** 

-0.326* -0.228 

 (0.0134) (0.0271) (0.0519) (0.181) (0.257) 

Shock × Animal Plant Manure 0.00924 -0.0706** -0.101 0.799*** 0.0179 

 (0.0158) (0.0341) (0.0615) (0.212) (0.321) 

Shock × Soil Erosion Prevention 

Measures 

-0.0237** 0.00270 0.144*** 0.417*** -0.482** 

 (0.0114) (0.0230) (0.0445) (0.158) (0.218) 

Constant 0.224*** -0.761*** 0.688*** -4.224*** 4.020*** 

 (0.0610) (0.116) (0.253) (0.799) (1.094) 

Demographic Household 

Characteristics 

Yes Yes Yes Yes Yes 

Household Wealth Yes Yes Yes Yes Yes 

Farm Characteristics Yes Yes Yes Yes Yes 

Membership – Farmer Support 

Groups  

Yes Yes Yes Yes Yes 

Peer Influence Yes Yes Yes Yes Yes 

Observations  15175 15175 15175 15175 15175 

Standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 
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Table B.3: Robustness to Alternate Dataset, Sample Size Restrictions, and Alternative 

Estimation Method – Pooled CRE 

 Model 1 Model 1 Model 1 Model 1 

 Crop 

Diversification 

Cropland 

Adjustment 

Seed Use Off-Farm 

Income 

Drought Shock (1=Yes) -0.0162 0.123*** 0.656*** -0.345 

 (0.0110) (0.0192) (0.0425) (0.253) 

Time Dummy 0.0257*** 0.0736*** -0.0116 0.532*** 

 (0.00663) (0.0130) (0.0270) (0.167) 

Agricultural Support      

Fertilizer-Seed Support (1=Yes) -0.0356*** -0.00523 -0.313** 0.801*** 

 (0.00755) (0.0139) (0.0349) (0.192) 

Agricultural Extension (1=Yes) 0.0138** 0.0562*** 0.199*** 1.404*** 

 (0.00578) (0.0115) (0.0237) (0.156) 

Agricultural Credit (1=Yes) 0.0992*** 0.170*** 0.0481* -0.744*** 

 (0.00641) (0.0137) (0.0264) (0.191) 

Choice of Adaptive Strategy      

Minimum Soil Disturbance (1=Yes) 0.0894*** -0.00578 0.229*** -0.511*** 

 (0.00564) (0.0106) (0.0236) (0.147) 

Crop Rotation (1=Yes) 0.117*** 0.0547*** 0.0529** -1.940*** 

 (0.00541) (0.0113) (0.0229) (0.157) 

Crop Residues – Soil (1=Yes) 0.0416*** 0.00332 0.0125 1.047*** 

 (0.00551) (0.0103) (0.0231) (0.143) 

Legume Intercropping (1=Yes) 0.0378*** -0.0457*** -0.0469 0.560*** 

 (0.00752) (0.0139) (0.0315) (0.195) 

Agroforestry (1=Yes) 0.0434*** 0.0461*** 0.0797** -0.287 

 (0.00754) (0.0148) (0.0312) (0.190) 

Irrigation (1=Yes) 0.00278 -0.0455*** 0.105*** -0.293 

 (0.00682) (0.0139) (0.0288) (0.190) 

Animal Plant Manure (1=Yes) 0.0000800 0.0112 0.0474 -0.0695 

 (0.00964) (0.0207) (0.0373) (0.276) 

Soil Erosion Prevention Practices 

(1=Yes) 

0.0338*** -0.0224** 0.0160 0.572*** 

 (0.00536) (0.0101) (0.0228) (0.142) 

Extreme Drought Conditions – 

Interaction Terms  

    

Shock × Fertilizer-Seed Support  0.0288** 0.0728*** 0.408*** -0.463 

 (0.0119) (0.0228) (0.0479) (0.310) 

Shock × Agricultural Extension -0.000553 -0.0334* -0.0615* -0.406 

 (0.00968) (0.0187) (0.0365) (0.259) 

Shock × Agricultural Credit 0.0671*** -0.100*** -0.177** 1.078*** 

 (0.00975) (0.0201) (0.0372) (0.294) 

Shock × Minimum Soil Disturbance  -0.0455*** -0.0502*** -0.309** -0.429* 

 (0.00943) (0.0182) (0.0358) (0.244) 

Shock × Crop Rotation -0.0115 -0.0868*** -0.157** 0.654** 

 (0.00952) (0.0193) (0.0357) (0.265) 

Shock × Legume Intercropping -0.0334* 0.0397 -0.216** -1.820*** 

 (0.0173) (0.0317) (0.0597) (0.417) 

Shock × Crop Residues – Soil -0.0352*** 0.0202 0.114*** -1.169*** 

 (0.00906) (0.0174) (0.0353) (0.234) 

Shock × Agroforestry -0.0316*** -0.0442** 0.0237 0.124 

 (0.0108) (0.0213) (0.0401) (0.279) 

Shock × Irrigation 0.0122 0.000960 -0.136** 0.0501 

 (0.0109) (0.0215) (0.0417) (0.288) 

Shock × Animal Plant Manure 0.00268 -0.0274 -0.0411 0.454 

 (0.0132) (0.0277) (0.0503) (0.361) 

Shock × Soil Erosion Prevention 

Measures 

-0.00176 -0.00246 0.0549 -1.003*** 
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 (0.00932) (0.0180) (0.0357) (0.246) 

Constant 0.106** -0.688*** 0.669*** 8.445*** 

 (0.0519) (0.0929) (0.204) (1.296) 

Demographic Household 

Characteristics 

Yes Yes Yes Yes 

Household Wealth Yes Yes Yes Yes 

Farm Characteristics Yes Yes Yes Yes 

Membership – Farmer Support 

Groups  

Yes Yes Yes Yes 

Peer Influence Yes Yes Yes Yes 

Observations 5243 5243 5243 5243 

Standard errors in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 
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