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Abstract

Purpose: To investigate whether access to
agricultural support and the choice of adaptive
strategy influence smallholder farmers' on-
farm and off-farm behavioural responses to
extreme drought exposure.

Materials and Methods: Using a large
nationally representative rural household-level
panel dataset, the study employs a matched
Correlated Random Effects (CRE) tobit model
to exploit regional variations in drought
exposure conditions.

Findings: Relative to the counterfactual group,
the results show that beneficiaries of fertilizer-
seed support and agricultural credit respond to
severe drought stresses by improving crop
portfolio management strategies. Further, the
results also reveal that recipients of fertilizer-
seed support expand croplands, seed
consumption, and fertilizer utilization in
response to extreme drought conditions while
access to agricultural credit contributes to
higher off-farm incomes and hence promotes
occupational diversity in treatment farm
households. Collectively, this points to the
instrumental role of agricultural support in
influencing the margin of adjustment in a way
that strengthens the adaptive capacity of poor
treatment farm households to climatic
variability and change. However, for the large
part, the choice of adaptive strategy appears to
induce the opposite effects, with drought
exposed adopters not only shifting towards
more specialized cropping systems but also
reducing hectarage shares, agricultural inputs,
and off-farm incomes. Together, this is an

https://doi.org/10.47672/aje.2847

indication that treatment adopters are relatively
more vulnerable to future extreme moisture
stress conditions, mainly cultivate improved
localized staple crops, fortify agricultural
investments on smaller manageable croplands,
reallocate labour away from off-farm income
enterprises towards own-farm activities, and
are unlikely to increase seed and fertilizer
uptake alongside adaptive land investments
that are not suitable to localized weather
conditions. The estimated results are robust to
alternative estimation strategies, sample size
adjustments, and alternate dataset.

Unique Contribution to Theory, Practice
and Policy: Based on the results of this study,
agricultural policy should be localized and
targeted to be effective. Support programs,
particularly fertilizer-seed support, credit
access, and extension services, must be
designed to reflect regional agroclimatic
conditions to strengthen farmers’ resilience.
Specifically, policies should prioritize
providing accessible finance and technical
guidance to  encourage  climate-smart
agricultural investments that are suitable to
local weather patterns. By doing so,
policymakers can help smallholders adopt
adaptive behaviours that reduce vulnerability
and enhance long-term climate resilience.
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1.0 INTRODUCTION

There is substantial suggestive evidence showing that the ripple adverse social and economic
costs of climatic variability and change are far-reaching (Burke & Emerick, 2016; Chen &
Gong, 2021; Colmer, 2021; Di Falco et al., 2012; IPCC, 2022; Ortiz-Bobea et al., 2021). Rural
farm households located in developing countries are relatively more exposed to climate shocks
largely because agricultural production is characterized by low land productivity and punitive
weather conditions (Aragén et al., 2021; Di Falco et al., 2011). Besides this, small-scale farmers
in resource-constrained settings are particularly vulnerable because they lack both the adaptive
capacity and technology to respond to climate change (IPCC, 2014, 2022), and the recent
devastating yield impacts of climatic hazards is a manifestation of their vulnerability to weather
anomalies (D1 Falco et al., 2012; Eggen et al., 2019; Groger & Zylberberg, 2016; McCarthy et
al., 2021; Parida & Chowdhury, 2021). Therefore, unless sufficient adaptation and risk-coping
strategies are adopted, food insecurity will continue to be endemic especially in Southern
Africa and South Asia (Asfaw et al., 2016; IPCC, 2014, 2022; Lobell et al., 2008). This
imminent food security threat posed by climate variability has led to increased calls for
smallholder farmers and other economic agents to boost their adaptive capacity to attenuate the
extent of economic damage (Branco & Féres, 2021; Burke & Emerick, 2016; McCord et al.,
2015; Piedra-Bonilla et al., 2020; Skoufias et al., 2017).

However, an exclusive focus on the yield impacts of climate variability may not show the full
extent of the vulnerability of agricultural output to adverse weather anomalies (Cohn et al.,
2016). Moreover, the inability of damage functions to capture behavioural responses to climate
change results in biased yield loss estimates and provides an incomplete picture of rural farm
households’ vulnerability and/or adaptive capacity (Aragon et al., 2021; Cui, 2020a). This is
largely because weather-induced agricultural production losses may stem not only from
reduced agricultural yields but also triggered behavioural responses such as cropland
adjustments, crop abandonment, and changes in cropping frequency and input mix (Aragoén et
al., 2021; Benhin, 2006; Cohn et al., 2016; Cui, 2020a; lizumi & Ramankutty, 2015). There is
empirical support to this effect, with estimates showing that approximately 70% of changes in
agricultural output caused by climate change originates from changes in cropland area and
cropping frequency (Cohn et al., 2016). Therefore, understanding the impacts of climatic
variability on the behavioural components of agricultural production and off-farm income
enterprises provides critical insights into the potential adaptive capacity of farm households.

Across developing countries, rural smallholder farmers attempt to hedge against adverse
climate stressors using a variety of micro-level on-farm and off-farm responses because the
pervasiveness of incomplete and/or missing insurance markets coupled with market failures
makes it difficult to transfer the climate risk to third parties (Bezabih & Sarr, 2012; McCord et
al., 2015; Mulwa & Visser, 2020; Piedra-Bonilla et al., 2020). Despite factors such as risk-
aversion and tenure security affecting climate adaptation, the prevailing evidence largely show
that smallholder farmers adopt polyculture agricultural systems to minimize climate-related
crop production risks (Arslan et al., 2018; Asfaw et al., 2019; Auffhammer & Carleton, 2018;
Bezabih & Sarr, 2012; Birthal & Hazrana, 2019; Huang et al., 2014; McCord et al., 2015;
Mulwa & Visser, 2020; Piedra-Bonilla et al., 2020). However, other studies show that adverse
weather conditions incentivize monoculture agricultural practices that perpetuate the
cultivation of low-value crops (Bradshaw et al., 2004; Cohn et al., 2016; Di Falco et al., 2010;
Ochieng et al., 2020; Sesmero et al., 2018). Relatedly, rural farm households either expand
croplands (Aragon et al., 2021; Cho & McCarl, 2017; Cui, 2020b) or shrink acreage shares
(Benhin, 2006; Cohn et al., 2016; Cui, 2020a) in response to the undesirable effects of extreme
weather stressors. Additionally, while some households reduce consumption of agricultural
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inputs (Chen & Gong, 2021; Sesmero et al., 2018), others respond to changing climatic
conditions by cultivating early maturing seed varieties and suitable localized crops, increasing
fertilizer usage, and staggering planting, weeding and harvesting dates (Amare & Simane,
2017; Below et al., 2010; Benhin, 2006; Bryan et al., 2013; Di Falco et al., 2011). Besides,
smallholder farmers respond to recurrent severe weather stressors by undertaking adaptive land
investments such as agroforestry, crop rotation, and legume-intercropping to strengthen, among
others, soil fertility and agricultural productivity (Below et al., 2010; Benhin, 2006; Bryan et
al., 2013; Deressa et al., 2009; Gbetibouo et al., 2010; Karanja Ng’ang’a et al., 2016).

Further, small-scale farmers also adjust livestock management practices by adopting drought
and heat tolerant livestock breeds to moderate the impacts of global warming (Below et al.,
2010; Benhin, 2006; Gbetibouo et al., 2010; Mulwa & Visser, 2020). In addition, alterations to
farm households’ occupational diversity are not uncommon behavioural responses to climate-
related risks. Specifically, extreme weather conditions contribute to labour diversification and
higher off-farm incomes (Arslan et al., 2018; Asfaw et al., 2018; Branco & Féres, 2021;
Skoufias et al., 2017). Although off-farm work reduces weather-induced income variability and
the need to depend on savings to smooth household consumption (Kochar, 1999), the evidence
also shows that weather anomalies contribute to job redundancies, lower wages, and labour
reallocation towards own-farm cropping activities at the expense of other remunerative off-
farm income enterprises (Banerjee, 2007; Chen & Gong, 2021; Jessoe et al., 2018; Mueller &
Quisumbing, 2011; Njuki, 2021; Parida & Chowdhury, 2021; Sesmero et al., 2018).
Furthermore, households with limited coping mechanisms either reallocate labour across
industries or migrate to other less affected regions so that migration, through migrant
remittances and additional incomes, serves as an effective shock-copping instrument against
severe weather shocks (Cattaneo & Peri, 2016; Colmer, 2021; Dercon, 2002; Feng et al., 2010;
Feng et al., 2012; Gray & Mueller, 2012; Groger & Zylberberg, 2016; Jessoe et al., 2018;
Marchiori et al., 2012). Additionally, government interventions that provide relief support
through, among others, input subsidies and transfers, attempt to not only offset the impacts and
risks of climate-related shocks but also influence behavioural responses in a way that improves
farm households’ adaptive capacity to climatic variability (Below et al., 2010; Berhane et al.,
2014; Halsnees & Traerup, 2009; McLeman et al., 2008; Pan, 2009).

1.1 Problem Statement

The 2015/2016 El Nifo drought-induced shock severely affected large parts of Zambia. In
particular, Figure 1 below shows that the 2015/2016 El Nifio droughts mostly affected regions
located in the southern half of Zambia. The main objective of this study is to exploit this unique
natural experiment to compare on-farm and off-farm behavioural responses between treatment
groups. Despite the growing evidence-base, empirical studies thus far especially from Sub-
Saharan Africa (SSA) do not provide comparative insights into the effectiveness of agricultural
policy in influencing on-farm and off-farm margin of adjustments to severe weather conditions.
This notwithstanding, I contribute to the literature in at least two main ways:

Firstly, there is a shortage of studies exploiting regional differences in drought exposure
conditions to explore whether access to agricultural support and the choice of adaptive strategy
influence on-farm and off-farm behavioural responses of drought-exposed households
differently vis-a-vis the counterfactual group. Current studies largely ignore localized
variations in weather characteristics that affect the effectiveness of agricultural policy in
influencing smallholder farmers’ behavioural margin of adjustments. Therefore, by adopting a
matched panel Correlated Random Effects (CRE) estimation strategy to compare behavioural
responses between treatment groups, I significantly distinguish this research from previous
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studies. Besides, this study further differentiates itself by comparing on-farm and off-farm
behavioural responses of treatment groups both before and after drought exposure to obtain
autonomous adaptation insights.

Secondly, unlike previous research, I incorporate matching methods into a panel data
estimation framework to generate robust and reliable causal estimates since a matched panel
estimation strategy compares observationally similar treatment groups whilst controlling for
unobserved heterogeneity. Moreover, I use high-resolution gridded satellite precipitation data
to calculate unbiassed rainfall shock identifiers and validate the drought exposure status of
treatment households.

Severely Affected Areas
2015/2016 El Nino Drought Shock

Exposure Status
B0
1

Source: Adapted from Alfani et al_. (2021) as derived from ZVAC (2016)

Figure 1: Severely Drought Exposed Areas

The rest of the paper is structured as follows: Section 2 presents the study’s theoretical
framework; Section 3 describes the data while Section 4 outlines the methodology; Section 5
reports and discusses the results and robustness checks before providing a conclusion in Section
6.

2.0 THEORETICAL FRAMEWORK

Across developing countries, incomplete markets are pervasive and largely characterize the
environment in which smallholder farmers operate. The simple theoretical agricultural model
derived in this section is primarily informed by the works of De Janvry et al. (1991), Benjamin
(1992), and Taylor and Adelman (2003) who modelled and conceptualized the behaviour of
peasant households in terms of utility and profit maximization under imperfect market
conditions where the corresponding household commodities are rendered non-tradable. This
entails that the presence of market failures in the goods and factor markets constrains
households from responding optimally to price incentives and/or shocks, but instead pushes
households to shift the burden of adjustment onto non-tradable inputs (e.g. labour) and
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consumption that are within the control of households (De Janvry et al., 1991). Besides,
smallholder farmers’ consumption and production decisions are interdependent because
households are both producers and consumers of goods in settings characterized by missing
and/or incomplete markets. Thus, unlike in standard consumer models where the household
budget is fixed, the farm household budget in agricultural models is endogenous because
household incomes are a function of profits — which are influenced by, among others,
production decisions (Taylor & Adelman, 2003).

To illustrate the simple model, let’s consider a representative rural farm household i producing
only one commodity q;; at time t and deriving utility from consuming the commodity C;; and
leisure l;; given by the following quasi-concave utility function U;; = U(Cy, Lit: Z;i¢), where
Z;; 1s a vector of exogenous household characteristics such as household size, age, and sex that
affect overall household utility. Furthermore, for illustration purposes, let’s also assume that
the production technology employed by the farm household i is given by the following quasi-
concave production function q;; = f(4;¢, Lie, Kir, Sit), Where A;; captures crop diversification
and other related crop management strategies, L;, represents total farm labour supply (and any
other variable input employed in production such as fertilizer) and constitutes family labour
Lf, and hired L labour given by L;; = L%, + L, K;; denotes capital that is assumed to be fixed
in the short-run, and S;; captures agricultural support variables such as fertilizer-seed support
and agricultural credit that are largely assumed to be fixed at the start of the growing season.
Besides, I consider S;; to serve not only as a shift factor but also to broadly capture various
attributes influencing the adoption of conservation agricultural techniques, soil quality, and
farming skills that allow the employment of identical agricultural inputs such as labour to yield
different outputs. Additionally, I also assume that the farm household i has an exogenous
income and total time endowment of y and T;:(Z;;) respectively at its disposal, and that the
household can supply LS, as off-farm labour. Therefore, the farm household divides its time
between leisure (1;;), working on the farm (Lf,), and working off-farm (LY,) as shown in the
following linear expression T (Z;.) = L + L, + LY.

Following studies such as Jessoe et al. (2018), Behrer and Park (2017) and Aragon et al. (2021)
coupled with overwhelming empirical support showing that extreme weather stressors induce
unfavourable impacts on agricultural output, labour productivity, and labour supply (Burke &
Emerick, 2016; Chen & Gong, 2021; Colmer, 2021; Njuki, 2021; Ortiz-Bobea et al., 2021;
Schlenker & Roberts, 2009; Wang et al., 2021), I allow growing weather conditions (W) to
affect agricultural production (q;;) through its impact on attributes of crop management
strategies (A;;) and farm labour supply (L;;) as shown in the following re-specified quasi-
concave production function q; = f(4;;(W),L;t(W),K;t, Sir), where W is the realized
weather at the location of the smallholder farmer — with moderately higher values of W
representing favourable growing weather conditions. Besides this, I also make the assumption
that (i) agricultural labour supply and weather conditions are complements; (ii) smallholder
farmers are mostly price takers; and (ii1) that the cost of hiring labour is equivalent to the wage
accrued from off-farm work (w) (Benjamin, 1992; De Janvry et al., 1991; Jessoe et al., 2018).

Therefore, assuming the existence of well-functioning labour markets, the farm household
maximizes utility subject to the total income constraint as follows:

s.t. Cit = Pof (Aie(W), Lir (W), Kit, Si) = WLEW) + WLEW) + Y v 2
Allowing for the influence of weather conditions, the total time endowment and farm labour

supply functions can be re-written as follows:
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Using equation (3) and (4) to make L%, (W) and L% (W) respectively the subject of the
formula as shown below in equations (5) and (6), and then substituting these expressions into
equation (2) alongside the competitive market equilibrium condition P. = P, where P. is the
price of the agricultural produce, we obtain the simplified expression shown below in equation

(7):

LS (W) = Ty (Zie) — Lig(W) = LEL(W) s ettt et e e et et e et ettt e e a0 D
LEW) = Lig(W) — LE (W) o e e et et et e e e e et et et et et e e e e st ev e enae s ©
Cie + wlyy(W) = Pf(A;e(W), Lie(W), Kit, Sie) = WLyt (W) + WTj (Zig) + Y eevv v 7

The right hand side of equation (7) is simply the total farm household income, which is
a function of farm households’ profits ;. (w, P, W, K;;, Sit) = Pf(A;;(W), Lit (W), K¢, Sit) —
wL;: (W), the value of the total time endowment [wT;:(Z;;)], and farm households’ cash
endowment (y). By letting Y™ represent the total household income, equation (7) can be re-
written as follows:

Maximizing the utility function U;; = U(Cy, l;;: Z;¢) in equation (1) subject to the total
household income constraint represented in equation (8), and then solving the first order
conditions yields the following household demand functions:

Ci*t = C(Y*, w, W) = C(P, w, W, I?it’ Slt) M mwn wae wes wes mn wer wws wes wms mnw wee wes wen 9
L= LYW, W) = L(P, W, W, Rig) Sit) e e e e e oe oeeoe veevee eeevesees vee e 10

Similarly, optimizing the household profit function and solving the first order
conditions results in the following input demand functions:

Ay = AP, W, W, Kip, Sit) covee eee eon e eee eesee ane s eee ene svneve evn s ene een e ene e 11
Ly = LOP, W, W, Ky Sit) cor eve eve vee o eee eee eee o s ene eee wen e ere aee son ven s ane wnen 12

Based on equations (11) and (12) above, we can observe that weather conditions (W) and
agricultural support (S;;) directly influence on-farm behavioural margin of adjustments.
Notwithstanding the overwhelming empirical support showing that adverse climatic variability
harms crop production and labour market conditions — and informed by the implications of
equations (5) and (6) —, I hypothesize that farm households respond to extreme weather events
by laying off hired labour, devoting more family labour hours towards own-farm cropping
activities, and shifting towards specialized, locally-adapted staple-crop systems to ensure food
security. Additionally, equations (11) and (12) suggest that expansionary agricultural policies
that enhance fertilizer-seed support, agricultural credit, and agricultural extension services can
incentivize smallholder farmers located in regions predisposed to severe weather conditions to
improve both crop management strategies and uptake of suitable agricultural inputs.

Formally, the first- and second-order conditions of the input demand functions support these
expectations. Within the derived model, equations (13) and (14) below indicate that extreme
weather reduces crop diversity and leads to labour layoffs. In contrast, equations (15) and (16)
suggest that recipients of agricultural support mitigate these impacts by improving crop
diversification and farm labour supply respectively in response to climate variability.

https://doi.org/10.47672/aje.2847 6 Tounkara (2026)
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Therefore, on the basis of all the above derived expressions, I postulate the following testable
hypotheses:

Hypothesis 1: Adverse drought conditions stimulate monoculture agricultural practices. This
hypothesis is drawn directly from the first-order derivative in equation (13), which indicates
that a low crop diversification value signifies a shift toward monoculture or more specialized
cropping systems.

Hypothesis 2: Severe aridity conditions contribute to cropland expansion and increased
utilization of productivity-enhancing inputs such as improved seed varieties and inorganic
fertilizers. This hypothesis builds indirectly on Hypothesis 1 by suggesting that specialization
in low-value crops increases the use of inputs such as drought-resistant seeds to raise
productivity. Accordingly, I propose that risk-averse smallholders — particularly in areas with
imperfect labour markets and food-insecurity concerns — respond to extreme drought by
expanding land use shares and boosting input application to mitigate losses in crop yields and
household consumption.

Hypothesis 3: Extreme weather conditions such as droughts lower off-farm incomes and
occupational diversity. This hypothesis, informed by equations (5), (6), (9), (10), and (14), is
consistent with the first hypothesis. It posits that an increase in family labour supply reduces
off-farm labour and income (equation 5 and 6). This income decline lowers demand for both
agricultural and non-agricultural goods, reducing consumption and leisure activity (equation 9
and 10). In response, farm and non-farm sectors lay oft workers, further depressing off-farm
income. Concurrently, under extreme weather, net farm labour supply decreases because
layoffs of hired labour exceed any rise in family labour supply (equation 14).

Hypothesis 4: Beneficiaries of agricultural support in drought-hit areas diversify crop
portfolio management strategies, expand hectarage shares, boost agricultural inputs uptake,
and earn lower off-farm incomes. This hypothesis is derived from the second-order derivatives
in equations (15) and (16), with equation (16) also indirectly relating to equations (5) and (6).
Specifically, equation (15) indicates that recipients of agricultural support adopt polyculture
systems in response to drought, positively influencing cropland expansion and input use.
Equation (16) shows that these beneficiaries also reallocate labor from off-farm activities to
their own farms, which reduces off-farm income and limits occupational diversity.

Hypothesis 5: The choice of adaptive strategy constrains crop diversity, cropland shares and
input utilization, and further contributes to lower off-farm incomes in drought-hit regions.
This hypothesis follows indirectly from Hypothesis 4, as agricultural support — often delivered
through extension services — shapes the choice of adaptive land investments. I propose that
drought-affected farmers with limited resources, for whom implementing suitable land
strategies across large, diverse croplands is costly and time-intensive, are likely to concentrate
labour on smaller, manageable plots of low-value crops to ensure basic food security.
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Consequently, this reduces the use of productivity-enhancing inputs, depresses off-farm
income, and limits occupational diversity.

3.0 DATA DESCRIPTION AND ANALYSIS
3.1 Data Description

This study combines a large three-wave rural household-level dataset with geocoded satellite
rainfall data to form a unique panel dataset. The nationally representative rural household-level
dataset comes from the Rural Agricultural Livelihoods Survey (RALS) which is conducted
every three years since 2012. RALSs collects and reports various agricultural and non-
agricultural information related to, among others, cropland shares, cultivated crops and seed
types, quantities of basal and top-dressing fertilizer used, and off-farm income enterprises.
Thus, the uniqueness of RALS lies in its comprehensiveness and national coverage, with the
2012 RALS utilizing the 2010 national census as its sampling frame. So far, a total of 7,241
rural agricultural farm households were re-interviewed in the latest 2019 RALS. Given that the
2015/2016 El Nino weather event triggered regional variations in aridity conditions and
severely affected areas mostly situated in the southern parts of Zambia, I follow Alfani et al.
(2021) and adopt the same treatment definition of extreme drought exposure used in the 2016
vulnerability and needs assessment report to categorize severely affected farm households
(ZVAC, 2016). This, in turn, partitions the 2015 RALS dataset into two separate groups,
namely, treatment and counterfactual group households. Thereafter, 1 track these farm
households back to the 2012 RALS and forward in the 2019 RALS to form a unique panel
dataset of treated and untreated farm households. On the other hand, I obtain the geocoded
satellite rainfall data from the Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS). CHIRPS collects daily precipitation data with a grid spatial resolution of 0.05° by
0.05° as far back as 1981 (Funk et al., 2015).

To combine the two respective georeferenced datasets, I use the nearest neighbour approach
that links each farm household in the household-level dataset to the nearest gridded
precipitation data point (Ndhlovu & Muchapondwa, 2020; Picard, 2019). Furthermore,
following studies such as Larcom et al. (2019) and Alfani et al. (2021), satellite precipitation
data is used to calculate rainfall shock identifiers at the location of the smallholder farmer in
order to objectively establish drought exposure and validate the treatment status of farm
households located in areas that were identified to be extremely affected by the 2015/2016 El
Nino drought shock. This secondary validation is vital because it ensures that only households
that experienced severe aridity conditions induced by the El Nifio drought shock are included
in the treatment sample. Therefore, to calculate objective rainfall shock identifiers over the
2015/2016 growing season — i.e., October to March, I use the following standardized deviation
measure:

Ryt — Ry

Rainfall_Anomally;; = .1

sd
where R;; is the total 2015/2016 growing season rainfall at the location of the smallholder
farmer i in the survey year of interest t = 2015, and R;; and a4 are the average and standard
deviation growing season rainfall respectively at the location of the smallholder farmer i over
the growing season reference period 2008/2009 - 2014/2015 preceding the 2015/2016 growing
season. The treatment group is validated and defined by assigning a value of 1 to all smallholder
farmers located in districts severely impacted by the El Nifio drought-induced shock where the
rainfall shock identifier is negative. However, households in areas that were either less affected
or unaffected by the droughts are assigned a value of zero, serving as the counterfactual group.
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Furthermore, note that I synonymously use the terminologies treatment vs control, treatment
vs untreated, treated vs counterfactual, and exposed vs unexposed.

This study considers five behavioural responses to extreme weather stressors that are
commonly hypothesized to influence farm households’ adaptive capacity. These include crop
diversification, cropland adjustment, seed consumption and inorganic fertilizer variations, and
off-farm income enterprises. The first four responses capture productive margin of adjustments
to adverse climatic conditions whereas off-farm income captures all off-farm income
enterprises that serve as shock-coping instruments against extreme weather events. Due to
space restrictions, the subsection below only defines and constructs the crop diversification
index while the rest of the dependent variables are defined in appendix A alongside all other
variables.

Crop Diversification Index

Crop diversification involves the cultivation of different crop types or consumption of different
seed varieties of the same crop type during the cropping season (Bezabih & Sarr, 2012;
Bradshaw et al., 2004; McCord et al., 2015; Mulwa & Visser, 2020). Although there exist
several variants of indices that measure crop diversification, these indices all intuitively attempt
to capture and relay information on the degree of climate risk smallholder farmers are willing
to assume or show how diversified crop portfolio management strategies are with respect to
the number of different cultivated crops over the growing season. Besides, irrespective of the
crop diversification measure, the degree of crop diversity is inversely related to both risk and
vulnerability to adverse weather conditions. Therefore, a relatively lower crop diversification
increases the risks of exposure and vulnerability to random weather shocks whereas the
opposite minimizes climate-related risks and strengthens farm households’ adaptive capacity
to extreme weather stressors.

Most previous empirical research either adopts the Simpson Index of Diversification (SID) or
Herfindahl-Hirschman Index (HHI) as crop diversification measures because they both
adequately provide insights into farm households’ cropping frequency and intensity using
information on the number of cultivated crops and corresponding hectarage shares
(Auffhammer & Carleton, 2018; Birthal & Hazrana, 2019; Kankwamba et al., 2018; Mulwa &
Visser, 2020; Ochieng et al., 2020; Piedra-Bonilla et al., 2020). Since the HHI is a subset of the
SID, and notwithstanding that the two indices are closely related and arrive at the same
conclusion on the degree of climate risk, I adopt the SID (Simpson, 1949) as a measure of crop
diversity. Therefore, following studies such as Kankwamba et al. (2018), Piedra-Bonilla et al.
(2020), and Ochieng et al. (2020), I exploit information on cropping frequency and associated
cropland shares at the location of the smallholder farmer to construct the SID shown below:

n
SID =1 — ZNJ-Z et eee e e s et e e e e s s 00 s s e e e s s et s e e e 2
j=1

n

j Ci
jt" crop, and j = 1,2,3, ...n is the number of cultivated crops. As can be seen in equation (2),
the number of cultivated crops and how equally the land is apportioned across these crops
determines the overall value of the SID, which ranges between 0 and 1 (Joshi et al., 2004;
Kankwamba et al., 2018; Ochieng et al., 2020; Piedra-Bonilla et al., 2020). Thus, the
implications of equation (2) are that the degree of crop diversity and farm specialization

increase as the SID approaches 1 and 0 respectively. By extension, this implies that highly

o .
where HHI= Z}‘:l sz, N; = JC represents the percentage of land in hectares allocated to the
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diversified farm households have HHI values closer to zero while higher values of HHI that
tends towards 1 are an indication of increased farm specialization.

3.2 Descriptive Analysis

Table 1 below shows selected vital summary statistics of smallholder farmers in the overall
sample and treatment groups using the 2012 RALS as the baseline sample. The average values
in the overall sample suggest that farm households cultivate roughly 2.3 hectares and consume
about 86 and 251 kg’s of seeds and inorganic fertilizers respectively. Further, column 1 also
shows a high average off-farm income, an indication that most farm households participate in
off-farm income activities. Additionally, a low SID value is indicative of a more specialized
cropping pattern and/or increased reliance on monoculture agricultural systems. Besides,
nearly 45% of farm households belong to a cooperative society, and about 49%, 55%, and 16%
accessed fertilizer-seed support, agricultural extension services, and agricultural credit
respectively.

With regard to the choice of adaptive strategy, the majority of farm households (66%) rely more
on crop residues. Furthermore, almost 32% of smallholder farmers adopt minimum soil
disturbance and soil moisture-enhancing technologies, while around 17%, 11%, 18%, and 9%
of the sample adopt crop rotation, legume-intercropping, irrigation, and animal-plant manure
respectively. Moving on, panel D shows that the average age and highest level of formal
education for the household head is about 45 and 6 years respectively. Moreover, most farm
households are headed by males (81%), of which 82% are either in a monogamous or
polygamous marriage. Additionally, on average, a typical rural household size consists of about
6 members. In terms of farm characteristics shown in panel E, smallholder farmers in the
overall sample own approximately 7 farm implements and cultivate about 3 crops and 4
agricultural fields during the growing season. Besides this, farm households maintain roughly
6 livestock units.
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Variable All Treatment Control
@ 2) 3
Panel A: Outcome Variables
Hectares Cultivated (ha) 2.30 2.51 2.20
Seed Consumption (kg) 85.56 84.57 86.09
Fertilizer Usage (kg) 250.78 256.90 247.50
Off-Farm Income (ZMW) 7,793,169 8,033,276 7,343,866
Simpson Index of Diversification 0.36 0.33 0.37
Panel B: Agricultural Support
Membership — Agricultural Cooperative Societies (Yes=1) 0.45 0.40 0.48
Fertilizer & Seed Support (Yes=1) 0.49 0.41 0.53
Agricultural Extension Services (Yes=1) 0.55 0.57 0.54
Access to Agricultural Credit (Yes=1) 0.16 0.22 0.13
Panel C: Choice of Adaptive Strategy
Minimum Soil Disturbance (Yes=1) 0.32 0.09 0.44
Crop Rotation (Yes=1) 0.17 0.07 0.22
Legume Intercropping (Yes=1) 0.11 0.05 0.14
Crop Residues — Soil (Yes=1) 0.66 0.69 0.65
Irrigation (Yes=1) 0.18 0.21 0.16
Animal & Plant Manure (Yes=1) 0.09 0.14 0.07
Soil Erosion Prevention Measures (Yes=1) 0.32 0.21 0.38
Panel D: Socio-demographic Characteristics
Age (Head) 45.49 45.79 45.33
Education (Head) 6.17 6.09 6.22
Household Head (Male=1) 0.81 0.79 0.82
Marital Status (Married=1) 0.82 0.80 0.83
Household Size 5.85 5.86 5.84
Panel E: Farm Characteristics
Number of Farm Implements 6.72 7.09 6.52
Number of Cultivated Crops 2.96 2.62 3.14
Number of Cultivated Fields 3.80 3.40 4.02
Number of Livestock Owned 6.24 9.33 4.59
Observations 8,839 3,080 5,759

Note: ZMW denotes the units for the Zambian currency “Kwacha”

However, partitioning the overall sample into treatment and counterfactual groups reveals
striking differences between the two groups. In particular, a comparison of columns (2) and (3)
show that treatment farm households cultivate more hectares than control group households.
Furthermore, treated households relatively earn more from off-farm income activities than
counterfactual households. However, the degree of crop diversification is relatively lower in
the treatment sample. Besides this, more counterfactual group households belong to
cooperative societies and benefit from fertilizer-seed support compared to treatment
households. However, there are more beneficiary treated farm households of agricultural
extension services and credit relative to the untreated group. Moreover, panel C shows that
treatment groups exhibit different adoption rates across all adaptive strategies. Likewise, socio-

https://doi.org/10.47672/aje.2847 11

Tounkara (2026)



American Journal of Economies

AJPE
ISSN 2520 - 0453 (Online)

Vol. 10, Issue 1, pp 1 - 51, 2026 www.ajpojournals.org

demographic and farm characteristics of treatment groups are noticeably different. Altogether,
these noticeable differences between treated groups may have serious implications on the
effectiveness of agricultural policy in influencing behavioural responses of treatment groups to
climatic variability and change.

Given that there may be justified fears that these pre-treatment compositional differences may
bias the estimated results and affect the effectiveness of agricultural policy, I apply matching
methods to generate a matched panel sample of treated groups that are observationally similar
(Khandker et al., 2009; Rosenbaum & Rubin, 1983, 1984, 1985). More specifically, I employ
both the Kernel and Nearest Neighbour (NN) matching approaches to evaluate matching
quality. Due to space limitations, I only show the standard Kernel matching quality results
because the Kernel matching estimator relatively produces better matching results. Table 2
below shows covariate balance tests for selected variables, and we can see that the application
of matching significantly minimizes the average differences between treatment groups in the
matched sample.

Additionally, figure 2 below shows baseline compositional distributional differences between
treatment and untreated groups both before and after matching. Particularly, panels A and B of
figure 2 both show the appeal of matching and visibly suggest that the differences between
treated and counterfactual groups dissipate and become indistinguishable from zero after
applying matching. Therefore, matching shrinks the compositional differences in observable
pre-exposure characteristics and consequently minimize the associated potential selection bias.
This, in turn, enables the study to derive reliable causal estimates and insights that can guide
the development of targeted agricultural policies aimed at enhancing the adaptive capacity of
treatment farm households. Although matching does not completely eliminate unobserved pre-
exposure compositional differences in household characteristics between treated groups
(Heckman et al., 1997; Rosenbaum & Rubin, 1985), applying panel data methods to a matched
panel dataset helps to significantly eliminate or address selection bias concerns since panel data
methods such as the Mundlak CRE and FE model controls for, among others, unobserved
heterogeneity.
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Table 2: Covariate Balance Test

Unmatched Mean %Reduct t-test
Variable Matched Treated Control  %Bias |Bias| t p> 1t
Household Head U 79384 82648 -8.3 -3.28 0.001
M 79384 .80474 -2.8 66.6 -0.94 0.349
Education U 5.9519 6.0952 -3.9 -1.53 0.125
M 5.9519 6.0103 -1.6 59.3 -0.54 0.592
Age U 46.799 45974 5.6 2.20 0.027
M 46.799  46.296 3.4 39.1 1.17 0.244
Marital Status U .81029  .83729 7.1 -2.79 0.005
M 81029  .81922 2.3 66.9 -0.79 0.429
Farm Implements U 7.3803 6.7482 8.3 3.10 0.002
M 7.3803  7.5916 2.3 66.6 -0.95 0.340
Cultivated Crops U 27154 3.2302 -32.6 -12.49 0.000
M 27154 2.7109 0.3 99.1 0.11 0.915
Cultivated Fields U 3.5384  4.154 -29.9 -11.56 0.000
M 3.5384  3.5373 0.0 99.8 0.02 0.985
Livestock Units U 10.367  5.0901 31.4 13.30 0.000
M 10.367  9.0162 8.0 74.4 237 0.018
Membership — Agricultural Cooperative U 43676 .50835 -14.4 -5.60 0.000
M 43676 45572 -3.8 73.5 -1.31 0.189
Fertilizer & Seed Support U 4296 56149 -26.6 -10.38 0.000
M 4296 45729 -5.6 79.0 -1.92 0.055
Peer Influence U 11046 10299 2.4 0.95 0.343
M 11046 .10669 1.2 49.6 0.42 0.677
Access to Credit U 23145 14178 232 9.29 0.000
M 23145 24131 -2.5 89.0 -0.80 0.424
Crop Rotation U .0801 .22949 -42.2 -15.58 0.000
M .0801 .08311 -0.9 98.0 -0.38 0.705
Intercropping U .04722 .14108 -32.6 -11.95 0.000
M .04722 .04479 0.8 97.4 0.40 0.691
Crop Residues — Soil U .69519 .65225 9.2 3.56 0.000
M .69519 69053 1.0 89.1 0.35 0.728
Irrigation U 22386 1707 13.4 5.30 0.000
M 22386 .20959 3.6 73.1 1.19 0.233
Animal & Plant Manure U .14798 .07007 25.2 10.31 0.000
M .14798 .13001 5.8 76.9 1.79 0.074
Bunding U .01265 .19092 -61.7 -21.61 0.000
M .01265 06657 -18.7 69.8 -9.61 0.000
Ridging U .06239 42934 -94.2 -33.91 0.000
M 06239  .08486 -5.8 93.9 -2.96 0.003
Hectares Cultivated U 2.6356 2.3133 139 5.47 0.000
M 2.6356 2.6909 2.4 82.9 -0.71 0.481
Simpson Index of Diversification U 33741 .38408 -18.7 -7.19 0.000
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4.0 MATERIALS AND METHODS

This study adopts the Mundlak CRE model to assess whether agricultural support and choice
of adaptive strategy influence on-farm and off-farm behavioural responses to extreme drought
conditions vis-a-vis the counterfactual group. As discussed in the preceding section, I apply
matching methods prior to estimating the CRE model to minimize the potential selection bias
that may confound the treatment effect. The two widely used standard panel data models in
applied research are FE and RE models. Despite their prominence, the two models are not
devoid of weaknesses. Notably, FE estimations are unable to capture time-constant effects
while RE models require the strict exogeneity assumption to hold to guarantee unbiased
estimates (Wooldridge, 2015). However, the CRE model is relatively more flexible because it
captures the unobserved heterogeneity that stems from time-constant omitted variables using
averages of time-varying observed covariates (McCarthy et al., 2021; Mundlak, 1978;
Schunck, 2013; Schunck & Perales, 2017; Wooldridge, 2019). Thus, the CRE framework not
only retains time-constant effects and other desirable attributes of both FE and RE models but
also explicitly accounts for any statistical dependence between time-varying observed

covariates and random effects (Mundlak, 1978; Wooldridge, 2011, 2019).

Given the foregoing, I estimate the matched CRE model using the following reduced-form
econometric specification to explore behavioural responses of treatment farm households
relative to the control group:

lnyl-t =a+ BTit + (Pltime + 6Dit + HTitDit + l/)Zit + T T T T TN 3

where [ny;, represents the natural logarithm of the dependent variables of interest (crop
diversity, cropland share, seed consumption, fertilizer use, and off-farm income) for household
i in year t, Tj; is a treatment dummy variable taking the value 1 for extreme drought exposure
(i.e., treatment group) and zero otherwise, I, is the time dummy variable capturing the
period before (I;jme = 0) and after (Iyne = 1) drought exposure, D;; is a vector of dummy
variables capturing access to agricultural support and the choice of adaptive strategy, Z;; is a
set of control variables such as household characteristics, farm attributes and social/peer
influence, and ¢;; is the error term. The coefficient « is the intercept, f measures the average
treatment effect of severe drought exposure relative to unexposed households, ¢ compares the
average difference in the behavioural margin of adjustment between pre- and post-exposure
periods, & captures the average differential influence of the choice of adaptive strategy and
agricultural support variables on productive and off-farm behavioural responses during average

weather conditions, and the average differential coefficient of interest 8 determines whether
agricultural support and the choice of adaptive strategy influence behavioural responses of
treatment farm households differently relative to the untreated group.

To shade further insights into the extent of autonomous adaptation, I also separately evaluate
and compare on-farm and off-farm behavioural responses of treatment groups both before and
after the drought shock. Therefore, I re-specify equation (3) and estimate the following
estimable reduced form matched CRE model:

lnylt =a -+ ﬁpreTitre + ﬁpostTilgOSt + ¢Itime + 6Dlt + ngtDlt + ll)th + git T 4

where Tizgreis a binary variable equal to 1 and captures the treatment group prior to the drought
shock whereas Ti’t’OSt is the counterpart dummy variable equal to 1 that captures treated

households after the drought shock, and all the other variables are as defined previously. The
coefficient 8, compares behavioural margin of adjustments between treatment groups before
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the drought shock. Similarly, the coefficient f,,,5; measures differential behavioural responses
of treatment farm households relative to the counterfactual group after the drought shock.

As the case is with many other household-level datasets, the observational dataset that this
study exploits also contains outliers on both extremes. Specifically, on the one hand, the dataset
contains true zeros because some smallholder farmers adopt mono-cropping agricultural
practices, rely more on organic than inorganic fertilizers, choose not to cultivate during the
growing season, or genuinely earn zero off-farm incomes. On the other hand, there are also
farm households that earn unusually high off-farm incomes and consume extremely large
quantities of farming inputs. Thus, it is not uncommon for rural household-level datasets to
contain outliers, and the presence of these extreme values inhibits the variables from exhibiting
the normal distribution properties. Besides, since the logarithm of zero is undefined, taking the
natural logarithm of genuine zero-valued observations drops the zero-values from the dataset.
Therefore, despite being attractive, the log transformation eliminates zero-valued observations
from the dataset and hence, deprives the study of a meaningful analysis and perspective that
would potentially come from the subset of zero-valued observations that the log-transformation
drops (Bellemare & Wichman, 2020).

There are several ad hoc log transformations in the applied econometrics literature that attempt
to simultaneously minimize the influence of outliers and sidestep the dropping of meaningful
nonpositive observations (Bellemare & Wichman, 2020; MaCurdy & Pencavel, 1986;
Michalopoulos & Papaioannou, 2013; Norton, 2022). As a case in point, Michalopoulos and
Papaioannou (2013) adds a small number of about 0.01 to zero-valued observations prior to
executing the log transformation while MaCurdy and Pencavel (1986) adopts a similar
approach that adds a value of 1 to nonnegative values. Similarly, the empirical literature also
shows growing use of the inverse hyperbolic sine function (also dubbed the arcsinh
transformation) to preserve zero-valued observations (Bellemare & Wichman, 2020; Burbidge
et al., 1988; MacKinnon & Magee, 1990; Norton, 2022; Pence, 2006; Ravallion, 2017). Given
the foregoing, it is obvious that ad hoc log transformations affect the size of effect estimates.
Recent empirical support to this effect demonstrates that there are substantial differences in
elasticity estimates derived from the arcsinh transformation and common ad hoc log
transformations that add 1 to zero-valued observations (Bellemare & Wichman, 2020). Thus,
this suggests that the choice of ad hoc log transformation can have huge direct implications on
the magnitude of coefficient estimates. This notwithstanding, and given the growing use of the
inverse hyperbolic sine function and its associated attractive properties (Bellemare &
Wichman, 2020; Norton, 2022; Ravallion, 2017), I also apply the inverse hyperbolic sine
function defined below to transform all continuous dependent and independent variables of
interest in the dataset.

1
SIMATI(X) = IN| X 4 (X2 4 1)Z [ ces oot et ee et et et et et et et et et e et een eae et ees see e e D

Since the inverse hyperbolic sine transformation retains zero-valued observations across all the
dependent variables, the appropriate model to estimate is the CRE tobit model. More
specifically, I use the bounded CRE tobit to model the association between crop diversification
and drought exposure since the SID lies between zero and one. However, the rest of the
estimations involving the other dependent variables —i.e., cropland share, seed uptake, fertilizer
use, and off-farm income — adopts a left-censored CRE tobit model that is truncated at the
lower bound of zero to evaluate respective behavioural responses to severe drought conditions
vis-a-vis the counterfactual group.
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5.0 FINDINGS

To compare behavioural responses between treatment groups, I conduct two sets of analysis
using specifications (3) and (4) discussed in the previous section. Specifically, the first
comparative assessment focuses on productive margin of adjustments while the second set
compares off-farm behavioural responses of treatment units. Furthermore, to correctly interpret
the coefficients on dummy variables across the estimated semilogarithmic specifications, I
transform the coefficients of interest by exponentiating them and thereafter subtracting one
from the outcome. This method of transforming coefficients is consistent with the approach
taken and/or guidance provided by Halvorsen and Palmquist (1980), Kennedy (1981), and
Bellemare and Wichman (2020). As such, the estimates discussed in the text will be slightly
different from those reported in the results tables. Additionally, note that each table reports the
estimated results derived from both specifications (3) and (4) (hereafter labelled model 1 and
2 respectively). Later on, I conduct several robustness tests to check the sensitivity of the main
CRE results to alternative estimation approaches, sample size restrictions, and alternate dataset.

5.1 On-Farm Margin of Adjustments
5.1.1 Crop Diversification

Table 3 below reports the results derived from the bounded CRE tobit specification that
associates crop diversification with extreme drought exposure, agricultural support, and choice
of adaptive strategy. Columns (1) and (2) both show that drought exposure significantly reduces
the degree of crop diversification among treatment farm households. Specifically, the drought
shock coefficient in the naive specification (1) is negative and highly statistically significant,
suggesting that drought exposure lowers the degree of crop diversification in drought-hit areas
by roughly 9% relative to the unexposed group. Similarly, this coefficient remains negative and
statistically significant in the preferred conditional specification (2) although the absolute size
of the coefficient reduces to about 2.1%. A relatively lower level of crop diversity is indicative
of increased farm specialization and vulnerability to climate-related risks. As such, I interpret
this to be evidence that poor farm households respond to drought exposure by shifting towards
more specialized cropping practices and cultivating suitable low-value crops to guarantee food
security. Although this observation is at variance with studies showing that farm households
improve crop diversification strategies to cope with extreme weather stressors (Asfaw et al.,
2018; Bezabih & Sarr, 2012; McCord et al., 2015; Mulwa & Visser, 2020; Piedra-Bonilla et
al., 2020), the results are broadly consistent with other previous studies that establish a negative
association between crop diversification and adverse climatic conditions (Bradshaw et al.,
2004; Cohn et al., 2016; Di Falco et al., 2010; Ndhlovu & Muchapondwa, 2020; Ochieng et
al., 2020).

In addition, the naive specification (3) shows that the coefficients on the pre- and post-treatment
variables are negative and highly statistically significant. While these coefficients retain the
direction of impact in the preferred conditional specification (4), the post-treatment coefficient
losses statistical significance. Moving on, column (2) shows that the time dummy coefticient
is positive and highly statistically significant, suggesting that overall crop diversity improves
by about 2.3% after the drought shock. Likewise, this coefficient remains positive in
specification (4) but becomes statistically insignificant. Furthermore, under average weather
conditions, specifications (2) and (4) both show that access to fertilizer-seed support induce
discernible adverse effects. This dissuading crop diversification effect is not surprising given
that Zambia’s past agricultural policy has largely been biased towards supporting the
cultivation of maize at the expense of other crops. Therefore, this finding points to the inherent
structural bias of the fertilizer-seed support programme towards the cultivation of localized
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staple crops. Further to this, noticeable positive impacts of agricultural credit can be seen in
both specifications (2) and (4). This finding supports the widely held premise that improved
access to credit can allow smallholder farmers to boost crop diversification strategies. With
regard to the impacts of adaptive strategies, columns (2) and (4) both show that most adaptive
land investments appear to largely strengthen the degree of crop diversity during regular
weather conditions.

However, under extreme drought conditions, the estimated coefficients on the interaction terms
across specifications (2) and (4) show contrasting and, in some cases, limited impacts.
Specifically, restricting the analysis to statistically significant interaction coefficients, the
results in column (2) suggest that treatment beneficiaries of fertilizer-seed support and
agricultural credit improve crop diversification strategies by about 3.3% and 7.3% respectively
relative to the counterfactual group. Comparable estimates can also be observed in specification
(4). Thus, I take this to be empirical support that treatment beneficiaries of fertilizer-seed
support and agricultural credit respond to drought conditions by improving crop portfolio
management strategies. As such, strengthening government support towards fertilizer and seed
acquisition, and eliminating agricultural credit bottlenecks can be effective conduits through
which crop diversification can be improved in areas experiencing severe moisture stress
conditions. Additionally, specification (2) shows that treated adopters of adaptive strategies
largely reduce the degree of crop diversification compared to the control group. Similarly, the
results shown in specification (4) provides comparable noticeable negative interaction effects.
Although these findings mostly contradict the impacts of adaptive strategies on crop
diversification previously observed under average weather conditions, I however take these
results to be empirical support that treated adopters largely reduce their crop diversity or adopt
mono-cropping agricultural practices in response to extreme drought exposure to guarantee
food security. Therefore, localized drought conditions appear to incentivize rural smallholder
farmers to embrace adaptive land strategies that complement monoculture agricultural systems.
Besides, since climate-smart practices are expensive to implement and sustain, I take this to be
suggestive evidence that costly adaptive land investments dissuade poor treated adopters from
diversifying their crop portfolio management strategies.
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Table 3: Productive Margin of Adjustment - Crop Diversification

Dependent Variable: In (Simpson Index Model 1 Model 2
of Diversification - SID) () 2 3) “)
Drought Shock (1=Yes) -0.0861*** -0.0204*
(0.00553) (0.0108)
Pre-Treatment -0.102%** -0.0319%**
(0.00629) (0.0118)
Post-Treatment -0.0603**%* -0.00325
(0.00733) (0.0130)
Time Dummy 0.0230%** 0.0117
(0.00705) (0.00854)
Agricultural Support
Fertilizer-Seed Support (1=Yes) -0.0240*** -0.0244%**
(0.00785) (0.00785)
Agricultural Extension (1=Yes) 0.00806 0.00843
(0.00636) (0.00636)
Agricultural Credit (1=Yes) 0.0969%** 0.0962***
(0.00768) (0.00768)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) 0.0868*** 0.0859%***
(0.00595) (0.00596)
Crop Rotation (1=Yes) 0.118*** 0.118***
(0.00624) (0.00624)
Crop Residues — Soil (1=Yes) 0.0350%** 0.0333***
(0.00586) (0.00590)
Legume Intercropping (1=Yes) 0.0308*** 0.0312%**
(0.00799) (0.00798)
Agroforestry (1=Yes) 0.0420%** 0.0485%**
(0.00825) (0.00869)
Irrigation (1=Yes) 0.0121 0.0131*
(0.00755) (0.00756)
Animal Plant Manure (1=Yes) 0.00377 0.00341
(0.0108) (0.0108)
Soil Erosion Prevention Practices (1=Yes) 0.0261%** 0.0267***
(0.00580) (0.00581)
Extreme Drought Conditions —
Interaction Terms
Shock x Fertilizer-Seed Support 0.0323** 0.0329%**
(0.0128) (0.0128)
Shock x Agricultural Extension 0.00750 0.00625
(0.0105) (0.0105)
Shock x Agricultural Credit 0.0700%*** 0.0716%**
(0.0117) (0.0118)
Shock x Minimum Soil Disturbance -0.0509%** -0.0479%**
(0.0104) (0.0105)
Shock x Crop Rotation -0.0200* -0.0165
(0.0110) (0.0111)
Shock x Legume Intercropping -0.0317* -0.0337**
(0.0171) (0.0171)
Shock x Crop Residues — Soil -0.0349%** -0.0289%**
(0.00974) (0.0101)
Shock x Agroforestry -0.0262** -0.04271***
(0.0119) (0.0137)
Shock x Irrigation 0.00137 0.000583
(0.0119) (0.0119)
Shock x Animal Plant Manure 0.00154 0.00211
(0.0146) (0.0146)
Shock x Soil Erosion Prevention 0.00419 0.00253
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Measures
(0.0102) (0.0102)

Constant 0.361%** 0.171%** 0.360%** 0.164%**

(0.00305) (0.0502) (0.003006) (0.0502)
Demographic Household Characteristics No Yes No Yes
Household Wealth No Yes No Yes
Farm Characteristics No Yes No Yes
Membership — Farmer Support Groups No Yes No Yes
Peer Influence No Yes No Yes
Observations 21800 21800 21800 21800

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
5.1.2 Cropland Adjustment

Table 4 below reports empirical estimates showing farm households’ cropland response to
extreme drought exposure and how agricultural support and the choice of adaptive strategy
affects cropland adjustments under regular and extreme weather conditions. The unconditional
specification (1) shows a positive and highly statistically significant drought exposure impact.
This coefficient retains the direction of impact and statistical significance in the preferred
specification (2), suggesting that extreme drought exposure results in cropland expansion of
about 11.6% among treated households relative to the untreated group. Notwithstanding the
inducement effect of severe drought stresses on farm specialization observed in the preceding
subsection, I interpret this result to be empirical support that smallholder farmers respond to
extreme drought exposure conditions by expanding hectarage shares of localized low-value
staple crops to minimize the risks of yield losses. This observation speaks to previous empirical
findings (Aragon et al., 2021; Cho & McCarl, 2017; Cohn et al., 2016; Cui, 2020b; lizumi &
Ramankutty, 2015), and thus, cropland expansion appears to be one response strategy used by
risk-averse farmers to mitigate drought-induced crop production risks.

Next, columns (3) and (4) both show that treatment households relatively cultivate large
portions of land both pre- and post-drought exposure. Particularly, unlike in the unconditional
specification (3), the preferred conditional specification (4) shows that treatment smallholder
farmers cultivate more land both before and after drought exposure of about 14.5% and 7.4%
respectively relative to the untreated group. However, since the post-drought exposure cropland
expansion of treatment households is relatively lower than that of the analogous pre-treatment
period, I hypothesize that exposure to severe drought conditions incentivize farm households
to reduce the rate of cropland expansion. Further, columns (2) and (4) both show that the time
dummy coefficients are positive and highly statistically significant. This suggests that overall
hectarage shares increased in the range 11.1% - 13.9% among smallholder farmers after the
drought shock.

With regard to the impacts of agricultural support on cropland share under average weather
conditions, specification (2) reveals that beneficiaries of agricultural extension services and
credit considerably expand croplands by approximately 4.2% and 18.4% respectively.
Similarly, comparable results can also be seen in specification (4) with respect to the effect
size, statistical significance, and direction of impact. Besides this, specification (2) also shows
that the adoption of adaptive land investments such as crop rotation and agroforestry
contributes to cropland expansion of roughly 6.4% and 3.6% respectively. However, adopters
of intercropping, irrigation, and soil erosion prevention measures downsize their land use
shares by about 5.5%, 4.8%, and 2.4% respectively. Similar findings are reported in
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specification (4) where the results remain largely unchanged with respect to the coefficient
sign, effect size, and statistical significance.

However, under extreme drought stresses, columns (2) and (4) both show that agricultural
support and choice of adaptive strategy influence cropland adjustment decisions of treatment
households differently relative to the counterfactual group. Restricting the discussion to
discernible interaction effects, specification (2) reveals that treated beneficiaries of fertilizer-
seed support and agricultural credit respond to extreme drought exposure conditions by
expanding and downsizing croplands by approximately 5.9% and 11.2% respectively relative
to the control group. The latter results are in sharp contrast to the results previously observed
under average weather conditions. Therefore, I speculate that access to agricultural credit
allows poor treated farm households to either strengthen adaptive land investments on smaller
manageable croplands or diversify away from field crops to other on-farm activities such as
livestock farming that are relatively less susceptible to aridity conditions. Similarly,
specification (4) also reports comparable results on the impacts of agricultural support on
cropland responses of treatment households. Additionally, specification (2) shows that treated
adopters of minimum soil disturbance, crop rotation, and agroforestry reduce their cropland
shares by about 4%, 9%, and 4.9% respectively compared to counterfactual group households.
Similarly, specification (4) also reports equivalent results that largely retain statistical
significance in addition to showing that adopters of legume-intercropping respond to water
stress conditions by expanding hectarage shares by roughly 5.7% relative to non-adopters in
control areas. Overall, I interpret these results to be suggestive evidence that adaptive land
strategies that are costly to implement and maintain largely discourage cropland expansion in
drought-hit regions.
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Dependent Variable: In (Hectares Cultivated) Model 1 Model 2
2 3 (C))
Drought Shock (1=Yes) 0.0560%**  0.110%**
(0.0140) (0.0204)
Pre-Treatment 0.0865%**  (.135%**
(0.0160) (0.0224)
Post-Treatment 0.00707 0.0715%**
(0.0187) (0.0248)
Time Dummy 0.105%** 0.130%**
(0.0135) (0.0163)
Agricultural Support
Fertilizer-Seed Support (1=Yes) 0.0159 0.0169
(0.0149) (0.0149)
Agricultural Extension (1=Yes) 0.0407*** 0.0399%**
(0.0121) (0.0121)
Agricultural Credit (1=Yes) 0.169%** 0.170%**
(0.0148) (0.0148)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) -0.00563 -0.00356
(0.0114) (0.0114)
Crop Rotation (1=Yes) 0.0620%** 0.0631%**
(0.0120) (0.0120)
Crop Residues — Soil (1=Yes) 0.0117 0.0153
(0.0112) (0.0112)
Legume Intercropping (1=Yes) - -
0.0534*** 0.0542%**
(0.0154) (0.0154)
Agroforestry (1=Yes) 0.0350%** 0.0206
(0.0158) (0.0166)
Irrigation (1=Yes) - -
0.0466*** 0.0482%**
(0.0148) (0.0148)
Animal Plant Manure (1=Yes) 0.0129 0.0136
(0.0205) (0.0205)
Soil Erosion Prevention Practices (1=Yes) -0.0237** -0.0251**
(0.0111) (0.0111)
Extreme Drought Conditions — Interaction Terms
Shock x Fertilizer-Seed Support 0.0572%* 0.0560%**
(0.0243) (0.0243)
Shock x Agricultural Extension -0.0186 -0.0158
(0.0199) (0.0199)
Shock x Agricultural Credit -0.106%** -0.109%**
(0.0225) (0.0225)
Shock x Minimum Soil Disturbance -0.0396** -0.0462%**
(0.0198) (0.0200)
Shock x Crop Rotation - -
0.0871%** 0.0949%**
(0.0209) (0.0211)
Shock x Legume Intercropping 0.0516 0.0558*
(0.0324) (0.0325)
Shock x Crop Residues — Soil 0.0160 0.00299
(0.0185) (0.0191)
Shock x Agroforestry -0.0482** -0.0131
(0.0226) (0.0260)
Shock x Irrigation 0.00936 0.0112
(0.0226) (0.0226)
Shock x Animal Plant Manure -0.0338 -0.0350
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(0.0279) (0.0279)
Shock x Soil Erosion Prevention Measures 0.00219 0.00593
(0.0194) (0.0194)
Constant 1.307%** -0.731%** 1.304%** -0.729%**
(0.00750) (0.0965) (0.00752) (0.0965)
Demographic Household Characteristics No Yes No Yes
Household Wealth No Yes No Yes
Farm Characteristics No Yes No Yes
Membership — Farmer Support Groups No Yes No Yes
Peer Influence No Yes No Yes
Observations 21800 21800 21800 21800

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
5.1.3 Seed Uptake

The results in table 5 below show farm households’ seed consumption response to severe
drought stresses, and how agricultural support and choice of adaptive strategy influence seed
uptake of treatment farm households relative to the control group. To begin with, the drought
exposure coefficient in the unconditional specification (1) is positive and highly statistically
significant. Conditioning on demographic household characteristics, wealth, farm attributes,
membership to farmer support groups, and peer influence, the drought shock coefficient in the
preferred specification (2) remains positive and highly statistically significant. This, therefore,
suggests that drought-exposed farm households relatively consume approximately 81.1% more
seed varieties than their counterparts in the counterfactual group. This observation is in line
with previous studies that find a positive correlation between extreme weather stressors and
input utilization (Benhin, 2006; Bryan et al., 2013; Call et al., 2019). Thus, I take this to be
empirical support that treatment farm households respond to extreme aridity stresses by
increasing their uptake of drought-resistant seed varieties to improve crop yields and climate
resilience.

Moving on, the naive specification (3) shows that the coefficients on the pre- and post-
treatment variables are positive and highly statistically significant. Similarly, the preferred
specification (4) equally shows discernible pre- and post-treatment coefficients that are
relatively larger than those observed in the naive specification (3). This suggests that treated
households, on average, consume more quantities of seed varieties than control group
households both before and after the drought shock. However, the post-treatment coefficient is
relatively lower than that of the counterpart pre-treatment coefficient. Therefore, I take this to
be indicative evidence that drought-exposed farm households are reluctant to increase their
seed uptake to pre-drought consumption levels. Nevertheless, taken as a whole, 1 find
supportive evidence showing that risk-averse treatment farm households generally consume
larger quantities of improved drought-resistant seed varieties to strengthen their adaptive
capacity and food security. Furthermore, specifications (2) and (4) both show that the
coefficients on the time dummy variable are positive and highly statistically significant. This
suggests that there was an overall increase in seed uptake of roughly between 11.1% and 26.4%
after the drought shock. Thus, I hypothesize that farm households generally boost consumption
of drought-resistant seeds post-drought shock to lower climate-related crop production risks
and losses.

With regard to the impacts of agricultural support on seed consumption under average weather
conditions, specification (2) reveals that the coefficient on fertilizer-seed support is negative
and significant, suggesting that beneficiaries of government fertilizer-seed support lower their
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seed uptake levels by roughly 21.9%. Although this observation is surprising and
counterintuitive, it does however suggest that risk-averse beneficiaries adopt a staggered
planting approach and hence withhold some of the seed supplies received and/or postpone the
acquisition of additional seed stocks. Further, column (2) also shows that beneficiaries of
agricultural extension services and credit increase their seed uptake by about 17.5% and 5.6%
respectively. Parallel results in terms of the magnitude and direction of impact can be seen in
specification (4) where the estimates largely retain statistical significance. Additionally, with
respect to the influence of adaptive strategies, column (2) shows that adopters of minimum soil
disturbance, crop rotation, and irrigation relatively consume larger seed quantities of
approximately 27.9%, 7.9%, and 11.7% respectively compared to non-adopters. However, the
estimated results in specification (2) also reveal that adopters of legume-intercropping reduce
seed uptake by about 8.6% during average weather conditions. Comparable results can be
observed in specification (4) where the coefficient estimates largely retain statistical
significance.

However, contradictory impacts can be seen under extreme drought conditions, with
specifications (2) and (4) both showing that agricultural support and choice of adaptive strategy
influence seed uptake responses of treatment households differently relative to the unexposed
group. Specifically, zeroing on the statistically significant interaction coefficients, column (2)
results show that treated beneficiaries of fertilizer-seed support consume about 41.6% more
seed varieties than untreated households. Thus, recipients of fertilizer-seed support respond to
extreme drought shocks by increasing their seed uptake. However, column (2) results also
reveals that agricultural credit beneficiaries in treated areas reduce seed uptake by roughly
21.3% relative to the untreated group. Although surprising, I interpret this result to be evidence
that agricultural finance recipients in treatment regions diversify away from cropping activities
to other on-farm enterprises. Note that the corresponding estimated results in column (4) mirror
that of specification (2) with respect to the coefficient sign and statistical significance. In
addition, the preferred specifications (2) and (4) both show several noticeable interaction terms
between drought shock and adaptive strategies. Particularly, column (2) shows that treatment
adopters of minimum soil disturbance, crop rotation, legume- intercropping, and irrigation
reduce seed uptake levels by approximately 35.3%, 13.9%, 23.4%, and 15.3% respectively
relative to the counterfactual group. However, column (2) also reveals that the adoption of crop
residues and soil erosion prevention practices in treatment districts contribute to higher seed
utilization of roughly 16.5% and 8.7% respectively compared to the untreated group.
Equivalent results can also be seen in specification (4) where the interaction coefficients of
interest largely retain the direction of impact and statistical significance. Collectively, I take
the above results to be indicative evidence that risk-averse smallholder farmers in drought-hit
regions are unlikely to increase their seed uptake alongside costly adaptive land investments
that are not suitable to localized aridity conditions.
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Table 5: Productive Margin of Adjustment - Seed Consumption

Dependent Variable: In (Seed Quantity-kg) Model 1 Model 2
@ 2 3 (C))
Drought Shock (1=Yes) 0.293***  (,637%**
(0.0291) (0.0429)
Pre-Treatment 0.345%#* (. 765%**
(0.0332) (0.0471)
Post-Treatment 0.209*** (.44 ***
(0.0387) (0.0520)
Time Dummy 0.105%** 0.234%**
(0.0284) (0.0344)
Agricultural Support
Fertilizer-Seed Support (1=Yes) -0.198*** -0.193***
(0.0314) (0.0313)
Agricultural Extension (1=Yes) 0.161%** 0.156%**
(0.0255) (0.0255)
Agricultural Credit (1=Yes) 0.0542* 0.0619%**
(0.0311) (0.0311)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) 0.246%** 0.256%**
(0.0240) (0.0240)
Crop Rotation (1=Yes) 0.0761*** 0.0818***
(0.0254) (0.0254)
Crop Residues — Soil (1=Yes) 0.0121 0.0306
(0.0236) (0.0237)
Legume Intercropping (1=Yes) -0.0821%** -0.0862***
(0.0325) (0.0324)
Agroforestry (1=Yes) 0.0329 -0.0401
(0.0332) (0.0350)
Irrigation (1=Yes) 0.1117%** 0.103%**
(0.0312) (0.0312)
Animal Plant Manure (1=Yes) 0.0399 0.0434
(0.0433) (0.0432)
Soil Erosion Prevention Practices (1=Yes) -0.0101 -0.0173
(0.0234) (0.0234)
Extreme Drought Conditions — Interaction Terms
Shock x Fertilizer-Seed Support 0.348%** 0.341%***
(0.0512) (0.0512)
Shock x Agricultural Extension -0.0307 -0.0166
(0.0420) (0.0420)
Shock x Agricultural Credit -0.193%** -0.211%**
(0.0474) (0.0474)
Shock x Minimum Soil Disturbance -0.302%** -0.336%**
(0.0418) (0.0420)
Shock x Crop Rotation -0.130%** -0.170%**
(0.0442) (0.0445)
Shock x Legume Intercropping -0.210%** -0.189%**
(0.0684) (0.0684)
Shock x Crop Residues — Soil 0.153%#* 0.0866**
(0.0390) (0.0402)
Shock x Agroforestry -0.00378 0.175%%**
(0.0478) (0.0548)
Shock x Irrigation -0.142%** -0.133%**
(0.0477) (0.0477)
Shock x Animal Plant Manure -0.0576 -0.0638
(0.0588) (0.0587)
Shock x Soil Erosion Prevention Measures 0.0835%** 0.102%*
(0.0409) (0.0409)
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Constant 4.327*¥% - (0.928%**  4.320*%**  (.923%**
(0.0155) (0.208) (0.0155) (0.208)

Demographic Household Characteristics No Yes No Yes

Household Wealth No Yes No Yes

Farm Characteristics No Yes No Yes

Membership — Farmer Support Groups No Yes No Yes

Peer Influence No Yes No Yes

Observations 21800 21800 21800 21800

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
5.1.4 Fertilizer Consumption

Table 6 below reports regression estimates showing the correlation between fertilizer uptake
and extreme drought exposure, and how agricultural support and choice of adaptive strategy
affects fertilizer use under average and severe weather conditions. The unconditional
specification (1) shows a positive and highly statistically significant coefficient on the drought
exposure variable. Conditioning on other relevant covariates in the preferred specification (2),
the absolute size of the coefficient on the drought exposure variable reduces and loses statistical
significance although the estimate retains the coefficient sign.

Further, the naive specification (3) shows that the coefficient on the pre-treatment variable is
positive and highly statistically significant. Similarly, a noticeable positive analogous
coefficient can also be seen in the preferred specification (4). This suggests that treated farm
households mostly consume larger quantities of inorganic fertilizers relative to control group
households prior to experiencing severe aridity conditions. Besides this, the unconditional
specification (3) also shows that the coefficient on the post-treatment variable is positive but
not statistically significant. However, the corresponding coefficient on the post-treatment
variable in the preferred specification (4) is negative and highly statistically significant.
Interestingly, this is an indication that treatment smallholder farmers relatively consume lower
fertilizer quantities than counterfactual group households after the drought shock. Moreover,
comparing fertilizer usage of treated households between the two periods, the preferred
conditional specification (4) shows that the post-drought exposure fertilizer uptake levels of
treatment households are significantly lower than that of the analogous pre-treatment period.
Overall, this observation does speak to selected previous empirical studies such as Sesmero et
al. (2018) and Chen and Gong (2021). Thus, relative to the unexposed group, I take this to be
suggestive evidence that poor treated farm households increasingly rely more on organic
fertilizers such as crop residues post-drought exposure, and hence respond to severe drought
conditions by reducing their inorganic fertilizer use.

The time dummy coefficients in specifications (2) and (4) are both positive and highly
statistically significant. This suggests that overall uptake of inorganic fertilizers was
significantly higher post-drought exposure among rural smallholder farmers. With respect to
the impacts of agricultural support and choice of adaptive strategy on fertilizer use under
average weather conditions, the preferred specification (2) reveals that the coefficients on
fertilizer-seed support, agricultural extension services, and agricultural credit are positive and
highly statistically significant. Similar results in terms of the direction of impact, coefficients
size, and statistical significance can be seen in column (4). Taken together, it can be inferred
that beneficiaries of agricultural support relatively consume greater quantities of inorganic
fertilizers during regular weather conditions. Additionally, specifications (2) and (4) both show
discernible positive coefficients on minimum soil disturbance, crop rotation, crop residues, and
irrigation, suggesting that adopters relatively consume larger quantities of inorganic fertilizers
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during average weather conditions. However, specifications (2) and (4) also reveal that the
coefficients on legume-intercropping are negative and highly statistically significant.
Therefore, 1 take this to be empirical support that the adoption of legume-intercropping
stimulates retrogressive effects on inorganic fertilizer uptake during normal weather
conditions. This observation is not surprising and makes intuitive sense since legume-
intercropping improves and/or maintains nitrogen levels beneath the soil. Hence, I conjecture
that the benefits of legume-intercropping such as improvements in soil structure, quality and
porosity alongside nitrogen fixation attributes reduces the attractiveness of inorganic fertilizers
and subsequently renders the uptake of chemical fertilizers redundant.

Last but not least, focusing on the statistically significant interaction coefficients, specifications
(2) and (4) both show that the coefficient on the interaction term between drought exposure
and fertilizer-seed support is positive and highly statistically significant. This suggests that
treatment beneficiaries of fertilizer-seed support consume larger quantities of inorganic
fertilizer relative to the counterfactual group. However, unlike the results observed under
average weather conditions, columns (2) and (4) both show that access to agricultural extension
services and credit stimulate undesirable effects on fertilizer uptake among treated households
compared to the counterfactual group. Therefore, this observation suggests that treatment
beneficiaries of agricultural extension services and credit respond to severe aridity conditions
by reducing their application of inorganic fertilizers. Although this observation is
counterintuitive, there are several plausible explanations for this observed reducing effect. For
example, there is a high likelihood that treatment beneficiaries of agricultural credit and
agricultural extension services with appropriate agricultural information abandon unsuitable
crops, diversify away from cropping activities towards livestock farming, or increase reliance
on compost fertilization such as animal-plant manure.

Further, specification (2) estimates suggest that treatment adopters of minimum soil
disturbance and legume-intercropping respond to extreme drought conditions by reducing
inorganic fertilizer application relative to the control group. Thus, I attribute the reduction in
inorganic fertilizer use to the nitrogen fixation benefits, among others, of legume-
intercropping. However, specification (2) results also show that drought-exposed adopters of
crop residues, animal-plant manure, and soil moisture-enhancing measures consume greater
amounts of chemical fertilizer compared to the counterfactual group. Therefore, I take this
observation to be suggestive evidence of complementarity between organic and inorganic
fertilizer use in areas prone to extreme water stress conditions among adopters of soil moisture-
enhancing technologies. Equivalent estimates can also be observed in the analogous preferred
specification (4) where the absolute magnitudes of the coefficient estimates are slightly larger
but remain mostly intact in terms of statistical significance and direction of impact.
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Table 6: Productive Margin of Adjustment - Fertilizer Utilization

Dependent Variable: In (Fertilizer Usage -kg) Model 1 Model 2
@ 2 3 (C))
Drought Shock (1=Yes) 0.511*** 0.0400
(0.0951) (0.147)
Pre-Treatment 0.724***  (0.604%**
(0.108) (0.160)
Post-Treatment 0.145 -0.805%**
(0.126) (0.176)
Time Dummy 1.190%** 1.735%*%*
(0.0935) (0.113)
Agricultural Support
Fertilizer-Seed Support (1=Yes) 2.716%** 2.737%**
(0.102) (0.101)
Agricultural Extension (1=Yes) 0.266%** 0.248%**
(0.0820) (0.0818)
Agricultural Credit (1=Yes) 0.288%** 0.320%**
(0.0999) (0.0997)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) 0.786%** 0.832%**
(0.0787) (0.0787)
Crop Rotation (1=Yes) 0.377*** 0.401%**
(0.0819) (0.0817)
Crop Residues — Soil (1=Yes) 0.100 0.179**
(0.0768) (0.0772)
Legume Intercropping (1=Yes) -0.521%** -0.540%**
(0.107) (0.107)
Agroforestry (1=Yes) -0.0378 -0.343%%x*
(0.108) (0.113)
Irrigation (1=Yes) 0.564%** 0.530%**
(0.100) (0.100)
Animal Plant Manure (1=Yes) -0.0535 -0.0374
(0.139) (0.139)
Soil Erosion Prevention Practices (1=Yes) 0.0384 0.00840
(0.0761) (0.0759)
Extreme Drought Conditions — Interaction Terms
Shock x Fertilizer-Seed Support 1.484%** 1.455%%*
(0.167) (0.167)
Shock x Agricultural Extension -0.323%* -0.256*
(0.138) (0.138)
Shock x Agricultural Credit -0.754%%* -0.820%**
(0.155) (0.155)
Shock x Minimum Soil Disturbance -0.831%** -0.981%**
(0.138) (0.139)
Shock x Crop Rotation 0.0793 -0.0881
(0.144) (0.145)
Shock x Legume Intercropping -0.638%** -0.574%%*
(0.232) (0.232)
Shock x Crop Residues — Soil 0.590%** 0.300**
(0.129) (0.133)
Shock x Agroforestry -0.229 0.548%**
(0.156) (0.180)
Shock x Irrigation -0.117 -0.0761
(0.156) (0.156)
Shock x Animal Plant Manure 0.490** 0.462**
(0.191) (0.191)
Shock x Soil Erosion Prevention Measures 0.252* 0.338**
(0.135) (0.135)
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Constant 3.753%*% - .6.013%**  3.697*¥*  -6.007***
(0.0515) (0.681) (0.0514) (0.681)
Demographic Household Characteristics No Yes No Yes
Household Wealth No Yes No Yes
Farm Characteristics No Yes No Yes
Membership — Farmer Support Groups No Yes No Yes
Peer Influence No Yes No Yes
Observations 21800 21800 21800 21800

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
5.2 Off-Farm Income Adjustment

This subsection first considers the average treatment impact of extreme drought exposure on
the off-farm income margin of adjustment. Thereafter, I examine the average differential
impact of access to agricultural support and choice of adaptive strategy on the off-farm income
behavioural response under average and extreme weather events. Column (1) of table 7 below
shows a negative and highly statistically significant coefficient on the drought shock variable.
However, conditioning on other relevant covariates, the preferred specification (2) reveals that
the drought exposure coefficient loses statistical significance despite retaining the direction of
impact. Further, the naive specification (3) shows that the pre- and post-treatment coefficients
are both negative and highly statistically significant. Likewise, the corresponding effect
estimates in the preferred specification (4) retains the coefficient sign but becomes statistically

insignificant.

Additionally, specifications (2) and (4) both show noticeable positive time dummy coefficients,
suggesting that households relatively earn higher off-farm incomes after the drought shock.
This is indicative evidence that smallholder farmers generally participate more in off-farm
income enterprises following the drought shock. Besides, under average weather conditions,
specifications (2) and (4) both show that recipients of fertilizer-seed support and agricultural
extension services relatively earn higher off-farm incomes while access to agricultural credit
contributes to lower off-farm incomes in beneficiary farm households. The latter observation
makes intuitive sense because beneficiaries of agricultural credit reallocate labour hours
towards own-farm cropping activities. Furthermore, specifications (2) and (4) both show that
the adoption of minimum soil disturbance and crop rotation contributes to lower off-farm
incomes while adopters of crop residues, legume-intercropping, and soil moisture-enhancing
measures experience the opposite impacts during average weather conditions. Thus, the choice
of adaptive land investment appears to influence the amount of time smallholder farmers devote
towards off-farm income enterprises.

However, under extreme drought conditions, the impacts of agricultural support and adaptive
strategies largely contrast that observed under regular weather conditions. Specifically,
restricting the analysis to visible interaction coefficients, columns (2) and (4) both show that
the coefficient on the interaction term between drought shock and agricultural credit is positive
and highly statistically significant. This suggests that treatment beneficiaries of agricultural
credit earn higher off-farm incomes relative to counterfactual households. Although this
observation is counterintuitive, I theorize that treatment beneficiaries of agricultural credit
boost their occupational diversity through income diversification to supplement agricultural
loans, support agricultural investments, and minimize the variability of overall household
incomes and consumption. Thus, I take this to be empirical support that access to agricultural
credit improves occupational diversity and off-farm labour hours in treatment farm households.
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Further, the interaction coefficient on the drought shock-crop rotation interaction term is
positive and highly statistically significant in both columns (2) and (4). This suggests that
treatment adopters of crop rotation relatively earn higher off-farm incomes than counterfactual
households. This result is not surprising, and I hypothesize that treatment adopters of crop
rotation strengthen their occupational diversity to earn additional incomes so that they can
successfully sustain crop rotation cycles over a long period to significantly improve land
productivity. Hence, I take this to be suggestive evidence that treated adopters of crop rotation
respond to severe drought stresses by devoting more labour hours towards off-farm income
enterprises. However, the results in columns (2) and (4) both show that treatment adopters of
legume-intercropping, crop residues, and soil moisture-enhancing technologies accrue lower
off-farm incomes than the control group. This, therefore, is indicative evidence that treatment
adopters of suitable climate-smart agricultural practices reallocate labour away from off-farm
income initiatives towards own-farm cropping activities. As a result, this lowers off-farm
incomes and, to a large extent, associated occupational diversity.

Table 7: Off-Farm Margin of Adjustment - Off-Farm Income

Dependent Variable: In (Off-Farm Income) Model 1 Model 2
@ 2 3 (C))
Drought Shock (1=Yes) -0.676%** -0.106
(0.134) (0.272)
Pre-Treatment -0.721%** -0.0252
(0.153) (0.299)
Post-Treatment -0.599%** -0.226
(0.178) (0.329)
Time Dummy 0.600%** 0.680%**
(0.180) (0.219)
Agricultural Support
Fertilizer-Seed Support (1=Yes) 0.788%** 0.792%%**
(0.199) (0.199)
Agricultural Extension (1=Yes) 1.383%** 1.381%**
(0.162) (0.162)
Agricultural Credit (1=Yes) -0.747%** -0.742%%*
(0.198) (0.198)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) -0.396*** -0.389**
(0.153) (0.153)
Crop Rotation (1=Yes) -1.905%** -1.902%**
(0.162) (0.162)
Crop Residues — Soil (1=Yes) 0.986*** 0.998*#:*
(0.150) (0.151)
Legume Intercropping (1=Yes) 0.601%** 0.598***
(0.206) (0.206)
Agroforestry (1=Yes) -0.185 -0.230
(0.211) (0.222)
Irrigation (1=Yes) -0.234 -0.239
(0.199) (0.199)
Animal Plant Manure (1=Yes) -0.204 -0.202
(0.276) (0.276)
Soil Erosion Prevention Practices (1=Yes) 0.687%** 0.683%#*
(0.149) (0.149)
Extreme Drought Conditions — Interaction Terms
Shock x Fertilizer-Seed Support -0.493 -0.498
(0.325) (0.325)
Shock x Agricultural Extension -0.357 -0.347
(0.267) (0.268)
Shock x Agricultural Credit 1.029%** 1.019%**
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(0.302) (0.303)
Shock x Minimum Soil Disturbance -0.320 -0.342
(0.266) (0.268)
Shock x Crop Rotation 0.672** 0.647**
(0.282) (0.284)
Shock x Legume Intercropping -1.910%** -1.896%**
(0.437) (0.437)
Shock x Crop Residues — Soil -1.140%** -1.182%**
(0.248) (0.256)
Shock x Agroforestry -0.0422 0.0684
(0.304) (0.349)
Shock x Irrigation 0.000284 0.00593
(0.304) (0.304)
Shock x Animal Plant Manure 0.583 0.579
(0.374) (0.374)
Shock x Soil Erosion Prevention Measures -1.010%** -0.998***
(0.260) (0.261)
Constant 7.376%** 9.638%** 7.402%** 9.602%**
(0.0700) (1.250) (0.0702) (1.251)
Demographic Household Characteristics No Yes No Yes
Household Wealth No Yes No Yes
Farm Characteristics No Yes No Yes
Membership — Farmer Support Groups No Yes No Yes
Peer Influence No Yes No Yes
Observations 21800 21800 21800 21800

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
5.3 Robustness Checks

One of the major concerns that may be tabled against the results presented in the previous
sections is that the CRE model does not completely control for all the unobserved heterogeneity
that stems from unobserved time-invariant household-level factors. Furthermore, there may be
fears that the observable correlations between the outcomes and covariates of interest are driven
by village-level factors and other regional, national, or environmental-level characteristics. As
such, the Fixed Effects (FE) estimation method can be considered to be a suitable alternative
estimation strategy that can circumvent and allay a lot of such concerns because of its ability
to significantly account for, among other advantages, unobserved heterogeneity. Besides this,
it also imperative to check whether the main CRE tobit results that exploits the panel structure
of the dataset are robust to other estimation approaches such as the pooled Ordinary Least
Squares (OLS), Random Effects (RE), and pooled CRE tobit.

Thus, I explore the sensitivity of the results presented in the main analysis section by; (1) re-
estimating the main CRE results using alternative estimation frameworks; (ii) conducting a
subsample re-analysis of the main CRE results using alternative estimation strategies; and (iii)
using the El Nifio Impact Assessment Survey (ENIAS) data to construct a unique alternate
panel dataset and thereafter applying alternative estimation techniques to replicate the main
CRE results. Due to space constraints, note that the results I reproduce and present in the
ensuing subsections are derived from model 1 —i.e., equation (3). Further to this, I report only
the replicated results obtained from the FE estimation technique while the re-estimated results
from other estimation approaches are shown in appendix B. Besides, note that I cluster the
standard errors at the unit of analysis (i.e., household-level) across all the reproduced
specifications.
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5.3.1 Robustness to Alternative Estimation Strategies

In this section, I re-estimate the main CRE tobit results using the FE estimation approach to
completely control for all unobserved time-constant omitted variables that may potentially
affect the correlation between the dependent and independent variables of interest. The
replicated FE results displayed in table 8 below show that the impacts of agricultural support
and adaptive strategies on treatment farm households’ behavioural responses are mostly
consistent with the main CRE results because the direction of impact and statistical significance
remain largely unchanged across the re-estimated specifications. Similarly, the replicated
results derived from the RE, pooled OLS, and pooled CRE tobit estimation strategies show that
behavioural responses of treatment smallholder farmers remain largely intact. However, what
is strikingly noticeable and interesting is that replicating the main CRE results using the RE
and pooled OLS models both duplicates the FE estimates. This observation is consistent with
the theoretical proposition that applying the pooled OLS and RE models to the CRE equation
reproduces the FE estimator (Wooldridge, 2019; Yang, 2022). Thus, I only show the replicated
pooled CRE tobit results in table B.1 in the appendix. By extension, subsequent sensitivity
checks also re-estimates the main results using the FE and pooled CRE tobit estimation
methods. Overall, there is strong evidence showing that the main CRE tobit results are robust
to alternative estimation strategies, and thus, the key insights and conclusions derived from the
main analysis remain largely unaffected.

Table 8: Robustness to Alternative Estimation Method — Fixed Effects (FE)

Model 1 Model 1 Model 1 Model 1 Model 1
Crop Cropland Seed Fertilizer Off-
Diversification Adjustment Uptake  Utilization Farm
Income
Drought Shock (1=Yes) -0.0192%** 0.104%** 0.592%** 0.140 -0.113
(0.00886) (0.0197) (0.0428) (0.0926) (0.209)
Time Dummy 0.0183*** 0.118*** 0.118***  (.838*** 0.0976
(0.00562) (0.0136) (0.0275) (0.0612) (0.135)
Agricultural Support
Fertilizer-Seed Support (1=Yes) -0.0144** 0.0184 -0.168%** 2. 015%*%* (. 798%**
(0.00649) (0.0148) (0.0353) (0.0774) (0.162)
Agricultural Extension (1=Yes) 0.00749 0.0430%**  0.158***  (0.204***  ].35]%**
(0.00501) (0.0122) (0.0244) (0.0536) (0.130)
Agricultural Credit (1=Yes) 0.0854*** 0.172%%* 0.0547**  0.193***  -0.661**
(0.00557) (0.0145) (0.0276) (0.0658) (0.156)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) 0.0686%*** -0.0127 0.223%** 0.492%**  (.493%*
(0.00485) (0.0113) (0.0247) (0.0516) (0.123)
Crop Rotation (1=Yes) 0.0994*** 0.0714%**  (0.0847***  0.319***  -1.711%*
(0.00482) (0.0121) (0.0240) (0.0535) (0.130)
Crop Residues — Soil (1=Yes) 0.0269%** 0.00723 0.00644 0.0469 0.856%**
(0.00475) (0.0110) (0.0240) (0.0500) (0.119)
Legume Intercropping (1=Yes) 0.0256%** -0.0480***  -0.0845**  -0.325%**  (.474%**
(0.00655) (0.0148) (0.0327) (0.0681) (0.159)
Agroforestry (1=Yes) 0.0335%** 0.0270%* 0.0240 -0.0529 -0.169
(0.00644) (0.0152) (0.0313) (0.0706) (0.152)
Irrigation (1=Yes) 0.0113* -0.0420%**  0.109***  (.384*** -0.146
(0.00592) (0.0148) (0.0295) (0.0664) (0.157)
Animal Plant Manure (1=Yes) 0.000726 0.0109 0.0335 -0.0280 -0.239
(0.00842) (0.0221) (0.0394) (0.0922) (0.222)
Soil Erosion Prevention Practices 0.0204*** -0.0248** -0.00729 0.0196 0.513%**
(1=Yes)
(0.00464) (0.0108) (0.0235) (0.0494) (0.118)
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Extreme Drought Conditions —
Interaction Terms

Shock x Fertilizer-Seed Support 0.0184* 0.0583** 0.321%** 1.060*** -0.427*
(0.0101) (0.0238) (0.0482) (0.124) (0.257)
Shock x Agricultural Extension 0.00504 -0.0239 -0.0320 -0.285%** -0.327
(0.00816) (0.0198) (0.0375) (0.0897) (0.213)
Shock x Agricultural Credit 0.0583%** -0.105%**  -0.183***  _0.636***  (.919***
(0.00852) (0.0212) (0.0383) (0.0997) (0.236)
Shock x Minimum Soil Disturbance -0.0406*** -0.0362%* -0.284***  _0.501***  -0.374*
(0.00805) (0.0192) (0.0367) (0.0892) (0.199)
Shock x Crop Rotation -0.0232%** -0.0870%**  -Q.123%** 0.0211 0.440%*
(0.00828) (0.0203) (0.0368) (0.0963) (0.215)
Shock x Legume Intercropping -0.0234 0.0482 -0.200%**  -0.362*%*  -1.607**
(0.0145) (0.0335) (0.0615) (0.151) (0.330)
Shock x Crop Residues — Soil -0.0292%*** 0.00892 0.145%**  (0.379%**  .0.932%*
(0.00762) (0.0184) (0.0363) (0.0849) (0.191)
Shock x Agroforestry -0.0200** -0.0512** -0.00326 -0.195%* -0.110
(0.00915) (0.0220) (0.0404) (0.103) (0.222)
Shock x Irrigation 0.00207 0.0109 -0.135%** -0.126 -0.00788
(0.00933) (0.0226) (0.0429) (0.105) (0.235)
Shock x Animal Plant Manure 0.00354 -0.0307 -0.0497 0.281%* 0.527*
(0.0113) (0.0293) (0.0519) (0.126) (0.292)
Shock % Soil Erosion Prevention 0.00264 -0.000106 0.0753** 0.173%* -0.778**
Measures
(0.00790) (0.0192) (0.0367) (0.0879) (0.201)
Constant 0.120%** -0.718%** 0.515%** -0.295 8.449%**
(0.0321) (0.0715) (0.152) (0.339) (0.817)
Demographic Household Yes Yes Yes Yes Yes
Characteristics
Household Wealth Yes Yes Yes Yes Yes
Farm Characteristics Yes Yes Yes Yes Yes
Membership — Farmer Support Yes Yes Yes Yes Yes
Groups
Peer Influence Yes Yes Yes Yes Yes
Observations 21800 21800 21800 21800 21800

Cluster-robust standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
5.3.2 Robustness to Sample Size Adjustments: Subsample Analysis

Further, I also conduct a subsample re-analysis of the main CRE tobit results using the FE and
pooled CRE tobit estimation strategies. Specifically, I derive a subsample by dropping all the
observations from the 2012 RALS so that the resulting subsample panel dataset consists of the
most recent two waves on either side of the drought shock (i.e., conducted just before and after
the drought). As can be seen in table 9 below, the replicated FE results remain largely
unchanged with respect to the sign and statistical significance of the main variables of interest,
although the absolute magnitude of some coefficients are either slightly or considerably
different from those observed in the main analysis section. Similarly, the pooled CRE tobit
results (shown in the appendix — i.e., table B.2) remain largely intact. Overall, the main CRE
tobit estimates are largely consistent and robust to both sample size restrictions/changes and
alternative estimation strategies.

https://doi.org/10.47672/aje.2847 33 Tounkara (2026)



5
American Journal of Economies A J P @

ISSN 2520 - 0453 (Online)
Vol. 10, Issue 1, pp 1 - 51, 2026 www.ajpojournals.org

Table 9: Robustness to Sample Size Adjustments (Subsample Analysis) and Alternative
Estimation Method - FE

Model 1 Model 1 Model 1 Model 1 Model 1
Crop Cropland Seed Fertilizer Off-
Diversification Adjustment Uptake Utilization Farm
Income
Drought Shock (1=Yes) -0.0310%*** 0.0527**  0.348%** 0.140 -0.0624
(0.0118) (0.0260) (0.0540) (0.122) (0.204)
Time Dummy 0.0439%** 0.123***  (0.189%**  (0.619%**  1.912%**
(0.00734) (0.0175) (0.0349)  (0.0785) (0.138)
Agricultural Support
Fertilizer-Seed Support (1=Yes) 0.0337%*** 0.0660%***  (.222%** 2 550%** -0.116
(0.00888) (0.0217) (0.0414) (0.101) (0.166)
Agricultural Extension (1=Yes) -0.0122%* 0.0143 0.0600* 0.123* 0.138
(0.00708) (0.0171) (0.0327)  (0.0741) (0.133)
Agricultural Credit (1=Yes) 0.0711%** 0.140%** 0.0514 0.225%**  (.345%*
(0.00734) (0.0183) (0.0358)  (0.0859) (0.150)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) 0.0735%** -0.0296* 0.258***  (.399%** 0.181
(0.00665) (0.0157) (0.0330)  (0.0701) (0.122)
Crop Rotation (1=Yes) 0.102%** 0.0857***  (.134%**  (.262%** -0.214
(0.00675) (0.0163) (0.0326)  (0.0728) (0.134)
Crop Residues — Soil (1=Yes) 0.0225%** 0.0246 -0.0176 0.113* 0.371%%*
(0.00640) (0.0152) (0.0312)  (0.0669) (0.119)
Legume Intercropping (1=Yes) -0.0251*** -0.0865***  _(0.214** -0.143 0.359%%*
(0.00859) (0.0207) (0.0404)  (0.0897) (0.158)
Agroforestry (1=Yes) 0.0331%** 0.0612%*** 0.0459 0.0956 -0.157
(0.00756) (0.0179) (0.0359)  (0.0829) (0.142)
Irrigation (1=Yes) -0.00101 -0.0562%**  (.142***  (.489%** -0.238
(0.00780) (0.0193) (0.0383)  (0.0856) (0.150)
Animal Plant Manure (1=Yes) -0.00342 0.0292 0.0494 -0.251%* -0.0350
(0.0110) (0.0283) (0.0507) 0.117) (0.221)
Soil Erosion Prevention Practices 0.0373%** 0.00278 -0.0105 0.0790 0.215%
(1=Yes)
(0.00619) (0.0145) (0.0302)  (0.0655) (0.117)
Extreme Drought Conditions —
Interaction Terms
Shock x Fertilizer-Seed Support -0.0199 -0.0131 -0.0756 0.406** -0.0157
(0.0135) (0.0324) (0.0617) (0.165) (0.257)
Shock x Agricultural Extension 0.00740 0.0125 0.0397 -0.206* 0.133
(0.0112) (0.0270) (0.0504) (0.123) (0.209)
Shock x Agricultural Credit 0.0691*** -0.0855***  -0.183**  -0.589*** 0.401*
(0.0113) (0.0281) (0.0509) (0.135) (0.235)
Shock x Minimum Soil Disturbance -0.0427*** -0.0263 -0.217%%  -0.421%** 0.213
(0.0103) (0.0247) (0.0472) (0.114) (0.194)
Shock x Crop Rotation -0.0159 -0.0673***  -0.0446 0.0928 0.340
(0.0108) (0.0255) (0.0484) (0.122) (0.211)
Shock x Legume Intercropping 0.0204 0.0560 -0.0569 -0.444%*  -0.835%*
(0.0179) (0.0408) (0.0734) (0.183) (0.319)
Shock x Crop Residues — Soil -0.0369*** -0.00892 0.203***  0.250** -0.217
(0.0102) (0.0244) (0.0468) (0.113) (0.193)
Shock x Agroforestry 0.00395 -0.0575%* 0.00964 -0.236* 0.0775
(0.0114) (0.0267) (0.0504) (0.127) (0.212)
Shock x Irrigation 0.00750 0.0434 -0.169**  -0.393%** -0.102
(0.0123) (0.0300) (0.0559) (0.137) (0.231)
Shock x Animal Plant Manure 0.000412 -0.0568 -0.0213 0.518*** -0.0167
(0.0147) (0.0373) (0.0669) (0.160) (0.287)
Shock x Soil Erosion Prevention -0.0234%** -0.0124 0.125%*%* 0.204* -0.323
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Measures
(0.0105) (0.0252) (0.0486) (0.119) (0.198)
Constant 0.125%** -0.550%** Q. 777*** 0.479 6.160%**
(0.0439) (0.0990) (0.201) (0.463) (0.815)
Demographic Household Yes Yes Yes Yes Yes
Characteristics
Household Wealth Yes Yes Yes Yes Yes
Farm Characteristics Yes Yes Yes Yes Yes
Membership — Farmer Support Yes Yes Yes Yes Yes
Groups
Peer Influence Yes Yes Yes Yes Yes
Observations 15175 15175 15175 15175 15175

Cluster-robust standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
5.3.3 Robustness to Alternate Dataset

Other than the above robustness checks, I also explore the sensitivity of the main CRE tobit
results to alternative subsample panel dataset. Particularly, I utilize the 2016 El Nifio Impact
Assessment Survey (ENIAS) data to construct a unique panel dataset and subsequently
replicate the main CRE tobit results using both the FE and pooled CRE tobit estimation
approaches. The 2016 ENIAS was implemented as a subset of the 2015 RALS by the Indaba
Agricultural Policy Research Institute (IAPRI) to primarily assess the impacts of extreme
aridity conditions on rural household welfare. However, the survey also collected other relevant
data on productive and off-farm behavioural responses that I exploit to check the sensitivity of
the main results. Thus, similar to the approach taken in studies such as Alfani et al. (2021) and
McCarthy et al. (2021), I track smallholder farmers captured in the 2016 ENIAS backwards to
the 2015 and 2012 RALS. Thereafter, I also trace these ENIAS farm households forward in the
latest 2019 RALS to form a unique long panel subsample dataset comprising four waves (i.e.,
2012, 2015, 2016, and 2019) and at least 5,200 observations.

Table 10 below reports selected results of four behavioural responses to extreme drought
exposure, and we can see that the replicated FE results closely align with the main CRE tobit
results in terms of both the direction of impact and statistical significance of the estimated
regression coefficients. Similarly, the estimated pooled CRE tobit results (shown in table B.3
in the appendix) are also largely consistent with the main CRE results with respect to the sign
and statistical significance of the estimates, although the effect sizes are relatively slightly
different for some coefficients. Overall, the replicated results remain largely intact and hence,
the core CRE tobit estimates are simultaneously robust to different estimation methods,
alternative subsample dataset, and sample size adjustments.

https://doi.org/10.47672/aje.2847 35 Tounkara (2026)



5
American Journal of Economies A J P @

ISSN 2520 - 0453 (Online)
Vol. 10, Issue 1, pp 1 - 51, 2026 www.ajpojournals.org

Table 10: Robustness to Alternate Dataset, Sample Size Restrictions, and Alternative
Estimation Method - FE

Model 1 Model 1 Model 1 Model 1
Crop Cropland Seed Off-Farm
Diversification Adjustment Uptake Income
Drought Shock (1=Yes) -0.0188** 0.106%** 0.619%** -0.247
(0.00831) (0.0186) (0.0398) (0.200)
Time Dummy 0.0118** 0.113%** 0.104%** -0.0691
(0.00531) (0.0129) (0.0261) (0.130)
Agricultural Support
Fertilizer-Seed Support (1=Yes) -0.0226*** 0.00391 -0.271%** 0.822%**
(0.00589) (0.0137) (0.0328) (0.152)
Agricultural Extension (1=Yes) 0.0127%%** 0.0501*** 0.177%** 1.395%**
(0.00468) (0.0114) (0.0229) (0.123)
Agricultural Credit (1=Yes) 0.0849%** 0.171%** 0.0601** -0.684***
(0.00535) (0.0137) (0.0260) (0.151)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) 0.0702%** -0.00855 0.223%%* -0.614%**
(0.00451) (0.0105) (0.0229) (0.117)
Crop Rotation (1=Yes) 0.0978*** 0.0699%** 0.0718*** -1.801%**
(0.00451) (0.0113) (0.0223) (0.124)
Crop Residues — Soil (1=Yes) 0.0295%** 0.00255 0.0216 0.884%**
(0.00442) (0.0102) (0.0224) (0.113)
Legume Intercropping (1=Yes) 0.0300%** -0.0415%%** -0.0489 0.391%%*
(0.00615) (0.0139) (0.0306) (0.154)
Agroforestry (1=Yes) 0.0380%** 0.0222 0.0159 -0.224
(0.00619) (0.0147) (0.0303) (0.148)
Irrigation (1=Yes) 0.00630 -0.0407*** 0.0947*** -0.216
(0.00557) (0.0139) (0.0280) (0.151)
Animal Plant Manure (1=Yes) -0.000587 0.0112 0.0368 -0.216
(0.00795) (0.0209) (0.0372) (0.218)
Soil Erosion Prevention Practices 0.0261%** -0.0212%** 0.0101 0.421%**
(1=Yes)
(0.00433) (0.0101) (0.0221) (0.113)
Extreme Drought Conditions —
Interaction Terms
Shock x Fertilizer-Seed Support 0.0157* 0.0736%** 0.376%** -0.382
(0.00933) (0.0223) (0.0453) (0.245)
Shock x Agricultural Extension 0.00244 -0.0336* -0.0709** -0.409%*
(0.00771) (0.0185) (0.0352) (0.203)
Shock x Agricultural Credit 0.0558%** -0.0981*** -0.169%** 0.955%**
(0.00810) (0.0201) (0.0362) (0.230)
Shock x Minimum Soil Disturbance -0.0393*** -0.0452%** -0.204*** -0.478%*
(0.00763) (0.0181) (0.0346) (0.193)
Shock x Crop Rotation -0.0198** -0.0861*** -0.115%** 0.476%*
(0.00787) (0.0193) (0.0347) (0.209)
Shock x Legume Intercropping -0.0218 0.0350 -0.225%** -1.560%**
(0.0139) (0.0318) (0.0582) (0.321)
Shock x Crop Residues — Soil -0.0309%** 0.0107 0.117%** -0.948%**
(0.00717) (0.0173) (0.0339) (0.184)
Shock x Agroforestry -0.023 1*** -0.0449** 0.0237 -0.0298
(0.00875) (0.0212) (0.0388) (0.216)
Shock x Irrigation 0.0104 0.00585 -0.133%** 0.0606
(0.00880) (0.0213) (0.0405) (0.227)
Shock x Animal Plant Manure 0.00447 -0.0270 -0.0539 0.551*
(0.0108) (0.0278) (0.0494) (0.285)
Shock x Soil Erosion Prevention -0.000606 -0.00525 0.0492 -0.829%**

Measures
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(0.00751) (0.0180) (0.0345) (0.194)
Constant 0.105%** -0.773%%* 0.467*** 10.57%%*
(0.0296) (0.0659) (0.140) (0.770)
Demographic Household Characteristics Yes Yes Yes Yes
Household Wealth Yes Yes Yes Yes
Farm Characteristics Yes Yes Yes Yes
Membership — Farmer Support Groups Yes Yes Yes Yes
Peer Influence Yes Yes Yes Yes
Observations 5243 5243 5243 5243

Cluster-robust standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
5.4 Study Implications

This study highlights key policy implications for building climate resilience. Firstly, there is
need for policymakers to facilitate the rapid distribution of improved seed technologies, input
subsidies, and irrigation facilities in regions prone to extreme weather conditions. Secondly,
the governments world-over should consider investing substantially in early warning systems
for natural disasters to minimise the negative welfare effects. Thirdly, policymakers should
lead in disseminating climate information, enhancing agricultural extension services, and
promoting climate technologies to reduce undesirable welfare impacts of climatic variability.
Last but not least, promoting farm diversification, exempting critical farm implements like
irrigation equipment from taxes, improving access to agricultural finance, offering tax
incentives to households adopting climate-resilient practices, and discouraging land
degradation are critical to strengthening long-term adaptive capacity.

6.0 CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion

This study conducts a comparative assessment that explores whether access to agricultural
support and choice of adaptive strategy influence on-farm and off-farm behavioural responses
of drought-exposed households differently vis-a-vis the counterfactual group using a relevant
SSA context. A matched CRE model is used to exploit regional variations in drought exposure
conditions and generate reliable causal estimates. Compared to counterfactual group
households, the results show, for the most part, that access to agricultural support plays an
instrumental role in strengthening treated smallholder farmers’ adaptive capacity. Particularly,
the findings show that treated beneficiaries of agricultural support mostly respond to
precipitation shortfalls by adopting polyculture agricultural systems, expanding croplands and
agricultural input uptake, and earning higher off-farm incomes. Contrariwise, the choice of
adaptive strategy appears to largely stimulate contrasting impacts, with results showing that
adopters tilt crop production towards reduced crop diversity and/or monoculture agricultural
systems, reduce hectarage shares and agricultural input consumption, and earn lower off-farm
incomes in response to severe water stress conditions. Taken together, this suggests that
drought-exposed adopters are relatively more susceptible to climate-related risks over the
medium to long-term period.

Additionally, I also obtain further insights into the extent of autonomous adaptation by
conducting a disaggregated analysis that compares behavioural responses of treated farm
households relative to control group households both before and after the drought shock. For
example, relative to the pre-exposure period, the estimated results show strong empirical
support that drought-exposed smallholder farmers lower their consumption of inorganic
fertilizers post-drought exposure. Moreover, the results also show that although treatment farm
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households expand croplands and boost their seed uptake after the drought shock, the increase
is relatively lower than that of the corresponding pre-treatment period. Collectively, this is
suggestive evidence that extreme drought exposure stimulates a dissuading effect that
discourages treatment smallholder farmers from expanding their croplands and seed
consumption to pre-drought exposure levels.

The results of this study present a first attempt at highlighting the importance of agricultural
policy in influencing behavioural responses of drought-hit farm households. Without
agricultural support, the regression estimates suggest that smallholder farmers’ short-term
responses to severe drought conditions amplifies their vulnerability to future climate-related
risks.

6.2 Recommendation

Overall, the estimated regression results provide at least two critical implications: Firstly,
variations in agroclimatic conditions significantly impact the effectiveness of agricultural
policy components (such as fertilizer-seed support, agricultural credit, and extension services)
in shaping the extent and nature of smallholder farmers’ behavioural responses to extreme
weather conditions. Secondly, access to agricultural support and the choice of adaptive strategy
can influence the behavioural response strategies of treatment farm households in a way that
strengthens their climate resilience. Besides this, the availability of agricultural finance and
agricultural extension services can allow farm households in regions predisposed to severe
drought stressors to not only adjust crop management strategies but also invest in climate-smart
agricultural technologies that are suitable to localized weather characteristics. Therefore, given
the varied impacts of agricultural support, the results of this study are of paramount importance
in growing the evidence-base that can be useful in localizing agricultural support, policies, and
identifying appropriate conservation farming techniques that positively influence smallholder
farmers’ behavioural responses to unfavourable weather anomalies. This, in turn, will improve
the overall adaptive capacity of rural agricultural communities to climatic variability and
change.
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Variable Name

Variable Description

Measurement Unit

Dependent
Variables

Crop
diversification

Cropland share

Seed uptake

Fertilizer
utilization

Off-farm income

Independent
Variables

Age
Gender

Education
Marital status
Household size

Farmer support
groups

Peer influence
Farm

characteristics

Household
wealth

Agricultural
support

Adaptive land
strategy

The cultivation of different crop types or consumption
of different seed varieties of the same crop type during
the cropping season.

The total cropping or cultivated area (in hectares) at the
location of the smallholder farmer — used as a proxy for
land use.

The total quantity of seed varieties (in kg) consumed
during the growing season at the location of the
smallholder farmer.

The total quantity (in kg) of basal and top-dressing
chemical fertilizer used during the growing season at the
location of the smallholder farmer.

The total wage/income paid in cash or in-kind accruing
to labour supplied either formally or informally to the
agriculture and non-agriculture sectors — note that
included in this definition are remittances in the form of
pensions that are disbursed to farm households.

The age of the household head.

Sex of the household head.

The highest level of formal education for the household
head.

Marital status of the household head.

The number of persons in the household.

Membership to farmer support groups such as
agricultural cooperative societies, savings and loan
groups, and women’s groups.

The smallholder farmer received advice from fellow
farmers, friends, or relatives.

This captures different farm implements and other
related farm attributes that influence productive
behavioural responses.

The total value of household assets — used as a proxy for
household wealth.

The smallholder farmer accessed fertilizer-seed support,
agricultural extension services, and/or agricultural
credit.

The smallholder farmer adopts adaptive land
investments such as crop rotation, minimum tillage,
intercropping, ridging, agroforestry, irrigation, and soil
erosion prevention measures.

Simpson Index of
Diversification (SID) - ranges
between 0 and 1.

Hectares (ha)
Kilograms (kg)

Kilograms (kg)

ZMW (K) —i.e., denotes
Zambia's currency "Kwacha".

Years

Dummy: 1=male and
O=female

Years

Dummy: 1=married and
O=otherwise

Number of household
members

Dummy: 1=yes and 0=no
Dummy: 1=yes and 0=no

Number of farm implements.

ZMW (K) —i.e., denotes
Zambia's currency "Kwacha".

Dummy: 1=yes and 0=no

Dummy: 1=yes and 0=no
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Effects (CRE)
Model 1 Model 1 Model 1 Model1  Model 1
Crop Cropland Seed Fertilizer Off-
Diversification Adjustment Utilization Use Farm
Income
Drought Shock (1=Yes) -0.0204* 0.110%*** 0.637%** 0.0399 -0.106
(0.0117) (0.0204) (0.0461) (0.163) (0.266)
Time Dummy 0.0230%** 0.105%** 0.105%**  1.190***  0.600%**
(0.00705) (0.0138) (0.0289) (0.0943)  (0.175)
Agricultural Support
Fertilizer-Seed Support (1=Yes) -0.0240%*** 0.0159 -0.199*** 2. 716%**  (.788***
(0.00826) (0.0151) (0.0377) (0.112) (0.206)
Agricultural Extension (1=Yes) 0.00806 0.0407*** 0.161***  0.266***  1.383%**
(0.00617) (0.0124) (0.0254) (0.0777)  (0.165)
Agricultural Credit (1=Yes) 0.0969%** 0.169%** 0.0541* 0.288***  .(.747**
(0.00671) (0.0146) (0.0285) (0.0947)  (0.200)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) 0.0868*** -0.00561 0.246%**  0.786%**  -0.396**
(0.00607) (0.0114) (0.0258) (0.0788)  (0.156)
Crop Rotation (1=Yes) 0.118*** 0.0620%**  0.0761***  (0.377***  -1.905%*
(0.00582) (0.0122) (0.0248) (0.0782)  (0.167)
Crop Residues — Soil (1=Yes) 0.0350%** 0.0117 0.0122 0.1000  0.986***
(0.00590) (0.0111) (0.0250) (0.0758)  (0.151)
Legume Intercropping (1=Yes) 0.0308*** -0.0534***  -0.0821**  -0.521**  0.601***
(0.00797) (0.0149) (0.0338) (0.107) (0.202)
Agroforestry (1=Yes) 0.0420%** 0.0349** 0.0329 -0.0374 -0.185
(0.00788) (0.0154) (0.0325) (0.104) (0.196)
Irrigation (1=Yes) 0.0121* -0.0465%**  0.111***  0.564*** -0.234
(0.00724) (0.0150) (0.0307) (0.0965)  (0.200)
Animal Plant Manure (1=Yes) 0.00376 0.0129 0.0398 -0.0529 -0.204
(0.0102) (0.0222) (0.0405) (0.133) (0.283)
Soil Erosion Prevention Practices 0.0260%** -0.0237** -0.0101 0.0388  0.687***
(1=Yes)
(0.00574) (0.0109) (0.0245) (0.0741)  (0.150)
Extreme Drought Conditions —
Interaction Terms
Shock x Fertilizer-Seed Support 0.0323%** 0.0573%** 0.348%** ] 484%** -0.493
(0.0127) (0.0243) (0.0511) (0.185) (0.328)
Shock x Agricultural Extension 0.00747 -0.0186 -0.0306 -0.323%%* -0.357
(0.0102) (0.0200) (0.0391) (0.138) (0.271)
Shock x Agricultural Credit 0.0700%*** -0.106%** -0.193%**  _0.753**  1.029%**
(0.0103) (0.0215) (0.0399) (0.151) (0.304)
Shock x Minimum Soil Disturbance -0.0509*** -0.0396** -0.302%** - -0.320
0.831%**
(0.00998) (0.0194) (0.0382) (0.141) (0.255)
Shock x Crop Rotation -0.0201** -0.0870***  -0.130*** 0.0804 0.672%*
(0.0101) (0.0204) (0.0380) (0.146) (0.278)
Shock x Legume Intercropping -0.0317* 0.0515 -0.210%**  -0.640**  -1.910**
(0.0182) (0.0337) (0.0636) (0.254) (0.432)
Shock x Crop Residues — Soil -0.0349%** 0.0160 0.153***  (.590%** -
1.140%**
(0.00957) (0.0187) (0.0380) (0.135) (0.245)
Shock x Agroforestry -0.0262** -0.0482** -0.00379 -0.230 -0.0422
(0.0113) (0.0222) (0.0418) (0.156) (0.287)
Shock x Irrigation 0.00137 0.00934 -0.143%*** -0.117  0.000284
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(0.0116) (0.0229) (0.0446) (0.160) (0.301)
Shock x Animal Plant Manure 0.00154 -0.0338 -0.0576 0.489%** 0.583
(0.0139) (0.0295) (0.0536) (0.189) (0.373)
Shock x Soil Erosion Prevention 0.00421 0.00222 0.0836** 0.251%* -1.010%*
Measures
(0.00982) (0.0193) (0.0382) (0.136) (0.257)
Constant 0.173%** -0.731%** 0.916***  -6.014**  9.638***
(0.0520) (0.0952) (0.212) (0.686) (1.249)
Demographic Household Yes Yes Yes Yes Yes
Characteristics
Household Wealth Yes Yes Yes Yes Yes
Farm Characteristics Yes Yes Yes Yes Yes
Membership — Farmer Support Yes Yes Yes Yes Yes
Groups
Peer Influence Yes Yes Yes Yes Yes
Observations 21800 21800 21800 21800 21800
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
Table B.2: Robustness to Sample Size Adjustments (Subsample Analysis) and
Alternative Estimation Method — Pooled CRE
Model 1 Model 1 Model 1 Model 1 Model 1
Crop Cropland Seed Fertilizer = Off-Farm
Diversification Adjustment Use Utilization Income
Drought Shock (1=Yes) -0.0375%** 0.0681***  0.449%** -0.127 -0.227
(0.0136) (0.0244) (0.0532) (0.183) (0.225)
Time Dummy 0.0525%** 0.112%** 0.186%** 1.016%*** 2.093%***
(0.00841) (0.0166) (0.0346) (0.109) (0.158)
Agricultural Support
Fertilizer-Seed Support (1=Yes) 0.0401%*** 0.0701%**  0.257*** 3 281%** 0.0473
(0.00932) (0.0187) (0.0377) (0.126) (0.180)
Agricultural Extension (1=Yes) -0.0135* 0.0314%** 0.0656** 0.128 0.204
(0.00744) (0.0153) (0.0307) (0.0904) (0.147)
Agricultural Credit (1=Yes) 0.0755%%*%* 0.135%** 0.0630* 0.448%** -0.286*
(0.00759) (0.0168) (0.0330) (0.108) (0.170)
Choice of Adaptive Strategy
Minimum Soil Disturbance 0.102%** -0.0229%* 0.255%*%* 0.618%** 0.147
(1=Yes)
(0.00724) (0.0139) (0.0312) (0.0914) (0.134)
Crop Rotation (1=Yes) 0.119%** 0.0656%**  0.149%**  (.398%** -0.418%*
(0.00705) (0.0148) (0.0305) (0.0925) (0.1406)
Crop Residues — Soil (1=Yes) 0.0318*** 0.0301** -0.0368 0.148%* 0.474%**
(0.00679) (0.0133) (0.0291) (0.0864) (0.130)
Legume Intercropping (1=Yes) -0.0178* -0.0800%*** - -0.327%** 0.258
0.205%**
(0.00922) (0.0182) (0.0379) (0.119) (0.173)
Agroforestry (1=Yes) 0.0355%** 0.0521*** 0.0547 0.0754 -0.210
(0.00861) (0.0172) (0.0358) (0.114) (0.168)
Irrigation (1=Yes) -0.00523 -0.0593***  (0.146%**  (0.610%** -0.210
(0.00840) (0.0177) (0.0358) (0.108) (0.167)
Animal Plant Manure (1=Yes) -0.00436 0.0247 0.0647 -0.447%%* 0.0362
(0.0117) (0.0257) (0.0463) (0.150) (0.245)
Soil Erosion Prevention Practices 0.0402%%** -0.0111 -0.0346 0.0535 0.346%**
(1=Yes)
(0.00661) (0.0130) (0.0284) (0.0850) (0.128)
Extreme Drought Conditions —
Interaction Terms
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Shock x Fertilizer-Seed Support -0.0172 -0.0153 -0.0952%* 0.587%** -0.00935

(0.0144) (0.0291) (0.0558) (0.213) (0.280)
Shock x Agricultural Extension 0.00166 -0.00838 0.0142 -0.245 0.145

(0.0120) (0.0242) (0.0462) (0.158) (0.231)
Shock x Agricultural Credit 0.0763*** -0.0844*** - -0.593%** 0.365

0.169%**

(0.0118) (0.0251) (0.0464) (0.175) (0.259)
Shock x Minimum Soil -0.0593*** -0.0196 -0.212%*  -0.531*** 0.354
Disturbance

(0.0114) (0.0228) (0.0447) (0.159) (0.217)
Shock x Crop Rotation -0.00985 -0.0498**  -0.0806* 0.253 0.504%**

(0.0117) (0.0237) (0.0450) (0.165) (0.237)
Shock x Legume Intercropping 0.00217 0.0705* -0.0474 -0.571%* -0.895%*

(0.0207) (0.0386) (0.0718) (0.274) (0.372)
Shock x Crop Residues — Soil -0.0382*** -0.0202 0.164%** 0.290%* -0.251

(0.0112) (0.0221) (0.0443) (0.152) (0.212)
Shock x Agroforestry 0.00745 -0.0384 0.0163 -0.194 0.191

(0.0128) (0.0253) (0.0482) (0.176) (0.248)
Shock x Irrigation 0.0124 0.0242 - -0.326%* -0.228

0.186%**

(0.0134) (0.0271) (0.0519) (0.181) (0.257)
Shock x Animal Plant Manure 0.00924 -0.0706** -0.101 0.799%** 0.0179

(0.0158) (0.0341) (0.0615) (0.212) (0.321)
Shock % Soil Erosion Prevention -0.0237** 0.00270 0.144%** 0.417%** -0.482%*
Measures

(0.0114) (0.0230) (0.0445) (0.158) (0.218)
Constant 0.224%** -0.761%**  (0.688%** -4 224%** 4.020%**

(0.0610) (0.116) (0.253) (0.799) (1.094)
Demographic Household Yes Yes Yes Yes Yes
Characteristics
Household Wealth Yes Yes Yes Yes Yes
Farm Characteristics Yes Yes Yes Yes Yes
Membership — Farmer Support Yes Yes Yes Yes Yes
Groups
Peer Influence Yes Yes Yes Yes Yes
Observations 15175 15175 15175 15175 15175

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table B.3: Robustness to Alternate Dataset, Sample Size Restrictions, and Alternative

Estimation Method — Pooled CRE

Model 1 Model 1 Model 1 Model 1
Crop Cropland Seed Use Off-Farm
Diversification Adjustment Income
Drought Shock (1=Yes) -0.0162 0.123%** 0.656%** -0.345
(0.0110) (0.0192) (0.0425) (0.253)
Time Dummy 0.0257%** 0.0736%** -0.0116 0.532%**
(0.00663) (0.0130) (0.0270) (0.167)
Agricultural Support
Fertilizer-Seed Support (1=Yes) -0.0356*** -0.00523 -0.313%* 0.801%**
(0.00755) (0.0139) (0.0349) (0.192)
Agricultural Extension (1=Yes) 0.0138** 0.0562%%*%* 0.199%** 1.404%**
(0.00578) (0.0115) (0.0237) (0.156)
Agricultural Credit (1=Yes) 0.0992%** 0.170%** 0.0481* -0.744***
(0.00641) (0.0137) (0.0264) (0.191)
Choice of Adaptive Strategy
Minimum Soil Disturbance (1=Yes) 0.0894*** -0.00578 0.229%** -0.511%**
(0.00564) (0.0106) (0.0236) (0.147)
Crop Rotation (1=Yes) 0.117*** 0.0547%** 0.0529** -1.940%**
(0.00541) (0.0113) (0.0229) (0.157)
Crop Residues — Soil (1=Yes) 0.0416%** 0.00332 0.0125 1.047%**
(0.00551) (0.0103) (0.0231) (0.143)
Legume Intercropping (1=Yes) 0.0378%** -0.0457%** -0.0469 0.560%**
(0.00752) (0.0139) (0.0315) (0.195)
Agroforestry (1=Yes) 0.0434%%** 0.0461*** 0.0797** -0.287
(0.00754) (0.0148) (0.0312) (0.190)
Irrigation (1=Yes) 0.00278 -0.0455%** 0.105%** -0.293
(0.00682) (0.0139) (0.0288) (0.190)
Animal Plant Manure (1=Yes) 0.0000800 0.0112 0.0474 -0.0695
(0.00964) (0.0207) (0.0373) (0.276)
Soil Erosion Prevention Practices 0.0338%** -0.0224** 0.0160 0.572%**
(1=Yes)
(0.00536) (0.0101) (0.0228) (0.142)
Extreme Drought Conditions —
Interaction Terms
Shock x Fertilizer-Seed Support 0.0288** 0.0728*** 0.408%** -0.463
(0.0119) (0.0228) (0.0479) (0.310)
Shock x Agricultural Extension -0.000553 -0.0334* -0.0615* -0.406
(0.00968) (0.0187) (0.0365) (0.259)
Shock x Agricultural Credit 0.0671%** -0.100*** -0.177** 1.078%**
(0.00975) (0.0201) (0.0372) (0.294)
Shock x Minimum Soil Disturbance -0.0455%** -0.0502%** -0.309%* -0.429%*
(0.00943) (0.0182) (0.0358) (0.244)
Shock x Crop Rotation -0.0115 -0.0868*** -0.157%* 0.654**
(0.00952) (0.0193) (0.0357) (0.265)
Shock x Legume Intercropping -0.0334* 0.0397 -0.216** -1.820%**
(0.0173) (0.0317) (0.0597) (0.417)
Shock x Crop Residues — Soil -0.0352%** 0.0202 0.114*** -1.169***
(0.00906) (0.0174) (0.0353) (0.234)
Shock x Agroforestry -0.0316*** -0.0442** 0.0237 0.124
(0.0108) (0.0213) (0.0401) (0.279)
Shock x Irrigation 0.0122 0.000960 -0.136** 0.0501
(0.0109) (0.0215) (0.0417) (0.288)
Shock x Animal Plant Manure 0.00268 -0.0274 -0.0411 0.454
(0.0132) (0.0277) (0.0503) (0.361)
Shock x Soil Erosion Prevention -0.00176 -0.00246 0.0549 -1.003%**
Measures
https://doi.org/10.47672/aje.2847 43 Tounkara (2026)



American Journal of Economies
ISSN 2520 - 0453 (Online)
Vol. 10, Issue 1, pp 1 - 51, 2026

AIPE

www.ajpojournals.org

(0.00932) (0.0180) (0.0357) (0.246)
Constant 0.106%** -0.688*** 0.669%** 8.445%%*
(0.0519) (0.0929) (0.204) (1.296)
Demographic Household Yes Yes Yes Yes
Characteristics
Household Wealth Yes Yes Yes Yes
Farm Characteristics Yes Yes Yes Yes
Membership — Farmer Support Yes Yes Yes Yes
Groups
Peer Influence Yes Yes Yes Yes
Observations 5243 5243 5243 5243
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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